

Guru Ghasidas Vishwavidyalaya (A Central University Established by the Central Universities Act 2009 No. 25 of 2009) Koni, Bilaspur – 495009 (C.G.)

bdfgdgdfgdfList of New Course(s) Introduced

Department : *Biotechnology*

Program Name : *M.Sc.*

Academic Year : 2020-21

List of New Course(s) Introduced

Sr. No.	Course Code	Name of the Course
1.	MBT 103T	Plant and Animal Biotechnology
2.	MBT 105T	Genetics
3.	MBT 106T	Biostatistics
4.	MBT 107L	Biochemistry and Analytical Techniques
5.	MBT 109L	Plant and Animal Biotechnology
6.	MBT 201 T	Genetic Engineering
7.	MBT 203T	Bioinformatics
8.	MBT 204T	Genomics and Proteomics
9.	MBT 205T	Molecular Diagnostics
10.	MBT 206T	Research Methodology and Scientific Communication Skills
11.	MBT 208T	Biological Imaging
12.	MBT 209T	Nanobiotechnology
13.	*MBT 210S	MOOCs course to be selected/opted from SWAYAM portal (SWAYAM-BIOTECH-1)
14.	MBT 211L	Molecular Biology and Genetic Engineering
15.	MBT 302T	Emerging Technologies
16.	MBT 303T	Critical Analysis of Classical Papers
17.	MBT 305T	Intellectual Property Rights, Biosafety and Bioethics
18.	MBT 306T	Project Proposal Preparation and Presentation
19.	MBT 307T	Research Seminar
20.	MBT 308T	Microbial Technology
21.	MBT 310 T	Computational Biology
22.	MBT 311 T	Drug Discovery and Development

गुरू घासीदास विश्वविद्यालय (केन्नेय विश्वविद्यालय अधिनम 2009 इ. 25 के अंतर्गत स्वापित केन्नेय विश्वविद्यालय) कोनी, बिलासपुर - 495009 (छ.ग.)

23.	MBT 312 T	Vaccines
24.	MBT 313 T	Protein Engineering
25.	MBT 314 T	Medical Microbiology and Infection Biology
26.	*MBT 315T	MOOCs course to be selected/opted from SWAYAM portal (SWAYAM-BIOTECH-1)
27.	MBT 316L	Laboratory VI: Bioprocess Engineering and Technology
28.	MBT 317 L	Laboratory VII: Bioinformatics
29.	MBT 401	Dissertation

गुरू घासीदास विश्वविद्यालय (केंद्रीय विश्वविद्यालय अधिनेवन 2009 ज. 25 के अंतर्गत स्वापित केंद्रीय विश्ववेद्यातव्य) कोनी, बिलासपुर - 495009 (छ.ग.)

Guru Ghasidas Vishwavidyalaya (A Central University Established by the Central Universities Act 2009 No. 25 of 2009) Koni, Bilaspur – 495009 (C.G.)

Minutes of Meetings (MoM) of Board of Studies (BoS)

Academic Year : 2020-21

School : School of Studies of Interdisciplinary Education and Research

Department : **Biotechnology**

Date and Time : 09-07-2020- 12:00 Noon

Venue

Room of Head, Department of Biotechnology

MINUTES OF THE MEETING OF BOARD OF STUDIES IN BIOTECHNOLOGY GURU GHASIDAS VISHWAVIDYALAYA, BILASPUR HELD ON 09/07/2020

A Meeting of the Board of Studies in Biotechnology under School of Interdisciplinary Education and Research was held on 09/07/2020 at 12:00 Noon under the chairmanship of Dr. Renu Bhatt, Head Department of Biotechnology. The following members were present.

(i) Dr. Renu Bhatt, Head

Chairman

Member Expert present online

Member

(iii) Prof. Keshavkant Sahu,

(iv) Dr. Dhananjay Shukla

The following agenda were placed to discuss:

(ii) Prof. B.N. Tiwary, Professor

1. Pre Ph.D syllabus as directed by UGC (syllabus of research and publication ethics) as a compulsory first paper along with Research methodology paper I.

2. To discuss CBCS Syllabus for M.Sc programme in Biotechnology.

3. To discuss and approve the ordinance of CBCS in M.Sc Biotechnology, w.e.f. 2020-21

4. Revision of Course code of CBCS B.Sc (Hons) with revised course name IE (Interdisciplinary Education and Research) in place of LS (Life Science) w.e.f 2020-21

5. To amend and approve the credit of SEC (skill enhancement course) in as 2 instead of 4 in CBCS B.Sc (Hons). III semester as per ordinance for 2019-20.

At the very outset the HOD, Chairman of Board of Studies welcomed all the BoS members and discussed the above agenda at length. Following resolutions were made in this meeting

1. The revised Pre Ph.D course work syllabus including Research Publication Ethics in the paper I to be named as Research Methodology and Research Publication Ethics of a total of 4 credits including 2 for Research Publication Ethics as per directives of the 1000 was discussed and approved by the BoS members including subject expenses that

2. The model syllabus of DBT (with 20% modification) CBCS M Sc Biotechnology syllabus and scheme of a examination, the course structure with course code of 2 year M Sc degree course was placed before the committee. The members after a thorough deliberations approved the course structure and course code of M Sc Biotechnology to be implemented from the Academic session 2020-2021.

3. The draft ordinance for M.Sc Biotechnology under CBCS pattern was discussed and approved by the Board of studies and recommended to be placed before Academic Council.

Openant Hutto

177220

New Course Introduced

गुरु घासीदास विश्वविद्यालय (केंद्रीय विस्तविवालय अधिनियम 2009 ज. 25 के अंतर्गत स्वापित केंद्रीय विश्ववेवातवर) कोनी, बिलासपुर - 495009 (छ.ग.)

Guru Ghasidas Vishwavidyalaya (A Central University Established by the Central Universities Act 2009 No. 25 of 2009) Koni, Bilaspur – 495009 (C.G.)

4. Since the name of School of Studies has changed from SoS of Life Science to SoS of Interdisciplinary Education and Research. The proposed revised draft of course code (LS to IE) of 3 years CBCS B.Sc (Hons) was placed and approved by BoS.

5. The credit of SEC as approved by BoS for 2019-20 was discussed and resolved to be amended to 2 instead of 4 (as per existing ordinance for 2019-20).

The meeting ended with a vote of thanks by the Chairman

Obhatt 9/07/20 Dr. Renu Bhatt Chairman Prof. B. N. Tiwary Member

Prof. Keshavkant Sahu Expert present online

Dr Dhananjay Shukla Member

In the Meeting of BOS-Biotechnology on 09-07-2020, the following courses were revised in the syllabus of M.Sc.:

Course Code	Name of the Course
MBT 101 T	Biochemistry
MBT 102T	Cell and Molecular Biology
MBT 103T	Plant and Animal Biotechnology
MBT 104T	Microbiology
MBT 105T	Genetics
MBT 106T	Biostatistics
MBT 107L	Biochemistry and Analytical Techniques
MBT 108L	Microbiology
MBT 109L	Plant and Animal Biotechnology
MBT 201 T	Genetic Engineering
MBT 202T	Immunology
MBT 203T	Bioinformatics
MBT 204T	Genomics and Proteomics
MBT 205T	Molecular Diagnostics
MBT 206T	Research Methodology and Scientific Communication Skills
MBT 207T	Environmental Biotechnology
MBT 208T	Biological Imaging
MBT 209T	Nanobiotechnology
*MBT 210S	MOOCs course to be selected/opted from SWAYAM portal (SWAYAM-BIOTECH-1)

New Course Introduced

Criteria - I (1.2.1)

गुरू घासीदास विश्वविद्यालय (केंद्रीय विस्तविवालय अधिनेयम 2009 क्र. 25 के अंतर्गत स्वापित केंद्रीय विश्वविवालय) कोनी, बिलासपुर - 495009 (छ.ग.)

Guru Ghasidas Vishwavidyalaya (A Central University Established by the Central Universities Act 2009 No. 25 of 2009) Koni, Bilaspur – 495009 (C.G.)

MBT 211L	Molecular Biology and Genetic Engineering
MBT 212 L	Immunology
MBT 301 T	Bioprocess Engineering and Technology
MBT 302T	Emerging Technologies
MBT 303T	Critical Analysis of Classical Papers
MBT 304T	Bioentrepreneurship
MBT 305T	Intellectual Property Rights, Biosafety and Bioethics
MBT 306T	Project Proposal Preparation and Presentation
MBT 307T	Research Seminar
MBT 308T	Microbial Technology
MBT 309 T	Animal Biotechnology
MBT 310 T	Computational Biology
MBT 311 T	Drug Discovery and Development
MBT 312 T	Vaccines
MBT 313 T	Protein Engineering
MBT 314 T	Medical Microbiology and Infection Biology
*MBT 315T	MOOCs course to be selected/opted from SWAYAM portal (SWAYAM-BIOTECH-1)
MBT 316L	Laboratory VI: Bioprocess Engineering and Technology
MBT 317 L	Laboratory VII: Bioinformatics
MBT 401	Dissertation

In the Meeting of BOS-Biotechnology on 09-07-2020, the following courses were revised in the syllabus of Ph.D. Course work:

Course Code	Name of the Course
101	Research Methodology and research publication Ethics

Guru Ghasidas Vishwavidyalaya (A Central University Established by the Central Universities Act 2009 No. 25 of 2009) Koni, Bilaspur – 495009 (C.G.)

The following new courses were introduced in the of M.Sc.:

Course Code	Name of the Course
MBT 103T	Plant and Animal Biotechnology
MBT 105T	Genetics
MBT 106T	Biostatistics
MBT 107L	Biochemistry and Analytical Techniques
MBT 109L	Plant and Animal Biotechnology
MBT 201 T	Genetic Engineering
MBT 203T	Bioinformatics
MBT 204T	Genomics and Proteomics
MBT 205T	Molecular Diagnostics
MBT 206T	Research Methodology and Scientific Communication Skills
MBT 208T	Biological Imaging
MBT 209T	Nanobiotechnology
*MBT 210S	MOOCs course to be selected/opted from SWAYAM portal (SWAYAM-BIOTECH-1)
MBT 211L	Molecular Biology and Genetic Engineering
MBT 302T	Emerging Technologies
MBT 303T	Critical Analysis of Classical Papers
MBT 305T	Intellectual Property Rights, Biosafety and Bioethics
MBT 306T	Project Proposal Preparation and Presentation
MBT 307T	Research Seminar
MBT 308T	Microbial Technology
MBT 310 T	Computational Biology
MBT 311 T	Drug Discovery and Development
MBT 312 T	Vaccines
MBT 313 T	Protein Engineering
MBT 314 T	Medical Microbiology and Infection Biology

Criteria – I (1.2.1)

गुरू घासीदास विश्वविद्यालय (केंद्रीय विश्वविवालय अधिनेयम 2009 क्र. 25 के अंतर्गत स्वापित केंद्रीय विश्वविद्यालय) कोनी, बिलासपुर - 495009 (छ.ग.)

Guru Ghasidas Vishwavidyalaya (A Central University Established by the Central Universities Act 2009 No. 25 of 2009) Koni, Bilaspur – 495009 (C.G.)

*MBT 315T	MOOCs course to be selected/opted from SWAYAM portal (SWAYAM-BIOTECH-1)
MBT 316L	Laboratory VI: Bioprocess Engineering and Technology
MBT 317 L	Laboratory VII: Bioinformatics
MBT 401	Dissertation

Deshatt

Signature & Seal of HoD

विभागाध्यक्ष, जैव प्रौद्योगिकी विभाग Head, Department of Biotechnology गुरू घासीदास विश्वविद्यालय, बिलासपुर (छ.ग.) जेपाय Ghasidas Vishwavidyalaya, Bilasour (C G.) गुरू घासीदास विश्वविद्यालय (केरीय विश्वविद्यालय अधिन्यम 2009 इ. 25 के अंतर्गत स्वापित केर्न्रय विश्वविद्यालय) कोनी, बिलासपुर - 495009 (छ.ग.)

Guru Ghasidas Vishwavidyalaya (A Central University Established by the Central Universities Act 2009 No. 25 of 2009) Koni, Bilaspur – 495009 (C.G.)

Scheme and Syllabus

New Course Introduced

Criteria – I (1.2.1)

गुरू घासीदास विश्वविद्यालय (केंद्रीय विस्तविवालय अधिनेवम 2009 ज्ञ. 25 के अंतर्गत स्वापित केंद्रीय विश्वविद्यालय) कोनी, बिलासपुर - 495009 (छ.ग.)

Guru Ghasidas Vishwavidyalaya (A Central University Established by the Central Universities Act 2009 No. 25 of 2009) Koni, Bilaspur – 495009 (C.G.)

Proposed Syllabus for M.Sc based on CBCS system

(Two years/Four semesters)

(Biotechnology)

(To be implemented from the academic session 2020-2021)

Department of Biotechnology School of Interdisciplinary Education and Research Guru Ghasidas Vishwavidyalaya

Mr Cartol Man

गुरू घासीदास विश्वविद्यालय (केन्नीय विश्वविद्यालय) कोनी, बिलासपुर - 495009 (छ.ग.)

Guru Ghasidas Vishwavidyalaya (A Central University Established by the Central Universities Act 2009 No. 25 of 2009) Koni, Bilaspur - 495009 (C.G.)

code	Course opted	M.Sc Biotechnology PG Seme Subjects	Hours/ semester	Hours/ week	Credits
MBT 101 T	Core -1	Biochemistry	48	03	3
MBT 102T	Core -2	Cell and Molecular Biology	48	03	3
MBT 103T	Core -3	Plant and Animal Biotechnology	48	03	3
MBT 104T	Core -4	Microbiology	32	02	2
MBT 10 <mark>5T</mark>	Core-5	Genetics	32	02	2
MBT 106T	Core-6	Biostatistics	48	03	3
		Laboratory			
MBT 107L	Lab 01	Biochemistry and Analytical Techniques	128	08	4
MBT 108L	·Lab 02	Microbiology	64	04	2
MBT 109L	Lab 03	Plant and Animal Biotechnology	64	04	2
		Total	512	32	24
A DESCRIPTION OF THE OWNER OF THE	1999 (A. 1997)	M.Sc Biotechnology PG Semest		and the state of	
Code	Course opted	Subjects	Hours/ semester	Hours/ week	Credits
MBT 201 T	Core -1	Genetic Engineering	48	03	3
MBT 202T	Core -2	Immunology	48	03	3
MBT 20 <mark>3T</mark>	Core -3	Bioinformatics	48	03	3
MBT 204T	Core-4	Genomics and Proteomics	32	02	2
MBT 205T	Core -5	Molecular Diagnostics	32	02	2
MBT 206T	Core -6	Research Methodology and Scientific Communication Skills	32	02	2
MBT 207T	Elective- 1	Environmental Biotechnology	32	02	2
MBT 208T	Elective-	Biological Imaging			
MBT 209T	Elective-	Nanobiotechnology			
*MBT 210S	Elective	MOOCs course to be selected/opted from SWAYAM portal (SWAYAM-BIOTECH-1)			
MBT 211L	Lab 01	Laboratory Molecular Biology and Genetic		08	4
	Labor	Engineering	128		1.0245
MBT 212 L	Lab 02	Immunology	96	06	3
		Total	496	31	24
		M.Sc Biotechnology and Seman	er ill		
Code	Course opted	Subjects	Hours/ semester	Hours/ week	Credits
20	shatt 9/7/2	or alst 20		Prent	els/ser

Syllabus for M.Sc program in Biotechnology 2020-21

9/7/2020

गुरू घासीदास विश्वविद्यालय (केंद्रीय विस्तविद्यालय अधिन्यम 2009 इ. 25 के अंतर्गत स्वापित केंद्रीय विश्वविद्यालय) कोनी, बिलासपुर - 495009 (छ.ग.)

Guru Ghasidas Vishwavidyalaya (A Central University Established by the Central Universities Act 2009 No. 25 of 2009) Koni, Bilaspur – 495009 (C.G.)

MBT 301 T	Core -1	Bioprocess Engineering and Technology	48	03	- 3
MBT 302T	Core -2	Emerging Technologies	32	02	2
MBT 303T	Core -3	Critical Analysis of Classical Papers	32	02	2
MBT 304T	Core-4	Bioentrepreneurship	32	02	2
MBT 305T	Core -5	Intellectual Property Rights, Biosafety and Bioethics	32	02	2
MBT 306T	Core -6	Project Proposal Preparation and Presentation	32	02	2
MBT 307T	Core -7	Research Seminar	32	02	2
MBT 308T	Elective	Microbial Technology	48	03	3
MBT 309 T	Elective	Animal Biotechnology		9	
MBT 310 T	Elective	Computational Biology	1		
MBT 311 T	Elective	Drug Discovery and Development			
MBT 312 T	Elective	Vaccines			
MBT 31 <mark>3</mark> T	Elective	Protein Engineering			
MBT 314 T	Elective	Medical Microbiology and Infection Biology			
*MBT 315T	Elective	MOOCs course to be selected/opted from SWAYAM portal (SWAYAM-BIOTECH-1			
		Laboratory			
MBT 316L	Lab 01	Laboratory VI: Bioprocess Engineering and Technology	128	08	4
MBT 317 L	Lab 02	Laboratory VII: Bioinformatics	64	04	2
		Total	480	30	24
		M.Sc Biotechnology PG Sectors	er IV		
Code	Course	Subjects	Hours/ semester	Hours/ week	Credits
MBT 401	Core -1	Dissertation	512	32	22
		Total	512	32	22
l. Mine	оло — — — — — — — — — — — — — — — — — —	Credits	16. 16.	Total	94

*M.Sc. Biotechnology students will select Massive Open Online Course (MOOCs)-SWAYAM course in the II and III semester available at http://ugcmoocs.inflibnet.ac.in/courses.php in consultation with Coordinator.

213htt 9/7/20

गुरू घासीदास विश्वविद्यालय (केंद्रीय विश्वविद्यालय अधिनेयम 2009 ज्ञ. 25 के अंतर्गत स्वापित केंद्रीय विश्ववेवात्रय) कोनी, बिलासपुर - 495009 (छ.ग.)

गुरू घासीदास विश्वविद्यालय (केरीय विश्वविद्यालय अधिन्यम 2009 इ. 25 के अंतर्गत स्वापित केर्न्रय विश्वविद्यालय) कोनी, बिलासपुर - 495009 (छ.ग.)

Guru Ghasidas Vishwavidyalaya (A Central University Established by the Central Universities Act 2009 No. 25 of 2009) Koni, Bilaspur – 495009 (C.G.)

Genetics Credits	Course Objectives The objectives of this course are to take students through basics of genetics and classical genetics covering prokaryotic/ phage genetics to yeast and higher eukaryotic domains. On covering all classical concepts of Mendelian genetics across these life-forms, studentswill be exposed to concepts of population genetics, quantitative genetics encompassing complex traits, clinical genetics and genetics of evolution.	 Student Learning Outcomes On successful completion of this course, student will be able : Describe fundamental molecular principles of genetics; Understand relationship between phenotype and genotype in human genetic traits; Describe the basics of genetic mapping; Understand how gene expression is regulated. 	
Unit I Genetics of bacteria and bacteriophages 10 lectures	Concept of a gene in pre-DNA era; mapping of genes in bacterial and phage chromosomes by classical genetic crosses; fine structure analysis of a gene; genetic complementation and other genetic crosses using phenotypic markers; phenotype to genotype connectivity prior to DNA-based understanding of gene.		
Unit II Yeast genetics 6 lectures	models of genetic recombination, yeast	ndelian and Mendelian ratios, gene conversion, mating type switch; dominant and recessive screens, complementation groups, transposon epistasis.	
@17/2020	Perintals	Avens	

Criteria – I (1.2.1)

गुरू घासीदास विश्वविद्यालय (केंद्रेव विस्तविवल्य अधिन्यम 2009 इ. 25 के अंतर्गत स्वापित केंद्रेव किर्ववेवाल्य) कोनी, बिलासपुर - 495009 (छ.ग.)

Unit III Drosophila genetics as a model of higher eukaryotes 4 lectures	Monohybrid & dihybrid crosses, back-crosses, test-crosses, analyses of autosomal and sex linkages, screening of mutations based on phenotypes and mapping the same, hypomorphy, genetic mosaics, genetic epistasis in context of developmental mechanism. Introduction to the elements of population genetics: genetic variation, genetic drift, neutral evolution; mutation selection, balancing selection, Fishers theorem, Hardy- Weinberg equilibrium, linkage disequilibrium; in-breeding depression & mating systems; population bottlenecks, migrations, Bayesian statistics; adaptive landscape, spatial variation & genetic fitness.		
Unit IV Population genetics and genetics of evolution 4 lectures			
Unit V Quantitative genetics of complex traits (QTLs) 2 lectures	Complex traits, mapping QTLs, yeast genomics to understand biology of QTLs.		
Unit VI Plant genetics 2 lectures	Laws of segregation in plant crosse genetic purity, gene pyramiding.	s, inbreeding, selfing, heterosis, maintenance of	
Bio-Statistics Credits 2	 MA: Jones and Bartlett. Pierce, B. A. (2005). <i>Genetics: a C</i> Tamarin, R. H., & Leavitt, R. W.(19) IA: Wm. C. Brown. 	ferences: Genetics: Principles and Analysis. Sudbury, onceptual Approach. New York: W.H. Freeman. 091). Principles of Genetics. Dubuque, Genetics. Oxford: Oxford University Press. Student Learning Outcomes On completion of this course, students should be able to: • Understand how to sum- arise statistical data; • Apply appropriate statistical tests based on an unders- tanding of study question, type of study and type of data; • Interpret results of statistical tests and application in biological systems.	
Jnit I Introduc ion lectures	systems data), frequency distribution	e, nominal scale, continuous and discrete logical on and graphical representations (bar graph, polygon), cumulative frequency distribution, stratified and systematic sampling.	
Ophatt 18020	D-Curry 6/2	Hush?	
Course Introduced		Criteria – I (1.2	

गुरु घासीदास विश्वविद्यालय (केंद्रीय विश्वविवालय अधिनेत्रम 2009 इ. 25 के अंतर्गत स्थापित केंद्रीय विश्वविवालय) कोनी, बिलासपुर - 495009 (छ.ग.)

Guru Ghasidas Vishwavidyalaya (A Central University Established by the Central Universities Act 2009 No. 25 of 2009) Koni, Bilaspur – 495009 (C.G.)

Unit II Descriptive statistics, Probability and distribution 10 lectures	Measures of Location, Properties of Arithmetic Mean, median, mode, range, Properties of the Variance and Standard Deviation, Coefficient of Variation, Grouped Data, Graphic Methods, Obtaining Descriptive Statistics on the Computer, Case study. Introduction to probability and laws of probability, Random Events, Events- exhaustive, Mutually exclusive and equally likely (with simple exercises), Definition and properties of binomial distribution, Poisson distribution and normal <u>distribution</u> .
Unit III Correlation and regression analysis, Statistical hypothesis 10 lectures	Correlation, Covariance, calculation of covariance and correlation, Correlatio coefficient from ungrouped data Spearson's Rank Correlation Coefficient, scatter and dot diagram, General Concepts of regression Fitting Regression Lines, regression coefficient, properties of Regression Coefficients Standard error of estimate. Making assumption, Null and alternate hypothesis, error i hypothesis testing, confidence interval, one-tailed and two-tailed testing, decisio making. Making assumption, Null and alternate hypothesis, error in hypothesis testing, confidence interval, one-tailed testing, decision making.
Unit IV Tests of significance 8 lectures	Steps in testing statistical significance, selection and computation of test of significance and interpretation of results; Sampling distribution of mean and standard error, Large sample tests (test for an assumed mean and equality of two population means with known S.D.), z-test; Small sample tests (t-test for an assumed mean and equality of means of two populations when sample observations are independent); parametric and Non parametric tests (Mann-Whitney test); paired and unpaired t-test, chi square test.
Unit V Experimental designs 8 lectures	Introduction to study designs: Longitudinal, cross-sectional, retrosp- ective and prospective study, Principles of experimental designs, Randomized block, and Simple factorial designs, Analysis of variance (ANOVA) and its use in analysis of RBD introduction to meta-analysis and systematic reviews, ethics in statistics.
	 Recommended Textbooks and References: 1. Jaype Brothers, (2011), Methods in Biostatistics for Medical Students and Research Workers (English), 7th Edition 2. Norman T.J. Bailey, (1995), Statistical Methods in Biology, 3rd Edition,
	 Addition, Cambridge University Press. P. N. Arora and P. K. Malhan, (2006), Biostatistics, 2nd Edition, Himalaya Publishing House. Jerold Zar, Biostatistical Analysis, 4th Edition. Pearson Education. Biostatistics: a Foundation for Analysis in the Health Sciences, 7th Edition, Wiley. ML Samuels, JA Witmer (2003) Statistics for the Life Sciences, 3rd edition. Prentice Hall.
Ophatt 202	2 Port Matrice
	X

New Course Introduced

Criteria – I (1.2.1)

गुरू घासीदास विश्वविद्यालय (केरीय विश्वविद्यालय अधिनेयम 2009 क्र. 25 के अंतर्गत स्वापित केर्न्रय विश्ववेववात्य) कोनी, बिलासपुर - 495009 (छ.ग.)

Guru Ghasidas Vishwavidyalaya (A Central University Established by the Central Universities Act 2009 No. 25 of 2009) Koni, Bilaspur – 495009 (C.G.)

Laboratory J: Biochemistry & Analytical Techniques

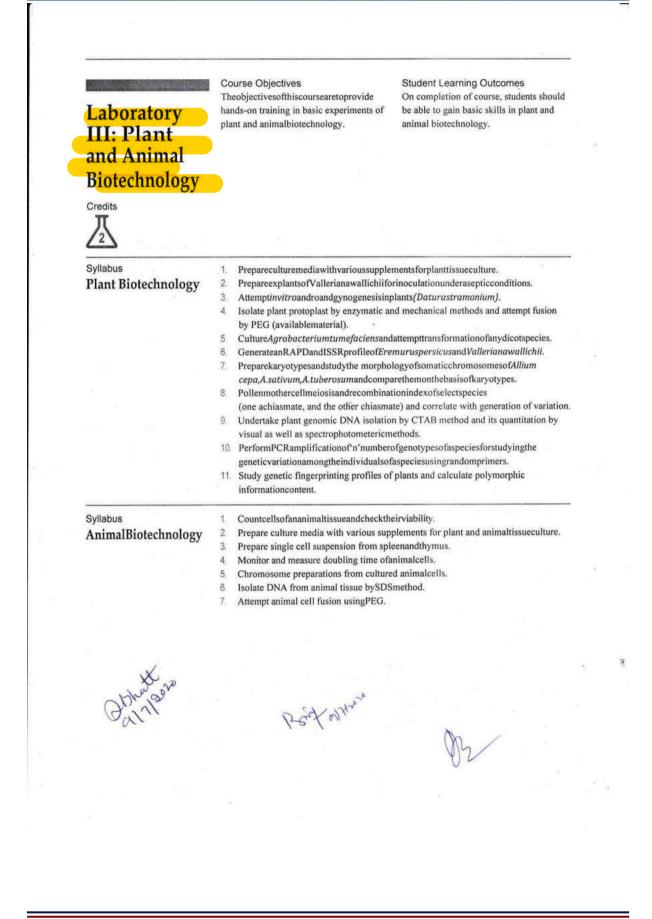
Credits

Course Objectives The objective of this laboratory course is to introduce students to experiments in biochemistry. The course isdesigned to teach students the utility of set of experimental methods in biochemistry in a problem oriented manner.

Student Learning Outcomes On completion of this course, students should be able to:

- To elaborate concepts of biochemistry with easy to run experiments;
- To familiarize with basic laboratory instruments and understand the principle of measurements using those instruments with experiments in biochemistry.
- 1. Preparing various stock solutions and working solutions that will be needed for the course.
- 2. To prepare an Acetic-Na Acetate Buffer and validate the Henderson-Hasselbach equation.
- To determine an unknown protein concentration by plotting a standard graph of BSA using UV-Vis Spectrophotometer and validating the Beer- Lambert's Law.
- Titration of Amino Acids and separation of aliphatic, aromatic and polar amino acids by thin layer chromatography.
- Purification and characterization of an enzyme from a recombinant source (such as Alkaline Phosphatase or Lactate Dehydrogenase or any enzyme of the institution's choice).
 - a) Preparation of cell-free lysates
 - b) Ammonium Sulfate precipitation
 - c) Ion-exchange Chromatography
 - d) Gel Filtration
 - e) Affinity Chromatography
 - f) Dialysis of the purified protein solution against 60% glycerol as a demonstration of storage method
 - g) Generating a Purification Table (protein concentration, amount of total protein; Computing specific activity of the enzyme preparation at each stage of purification)
 - h) Assessing purity of samples from each step of purification by SDS-PAGE Gel Electrophoresis
 - i) Enzyme Kinetic Parameters: Km, Vmax and Kcat.
- Experimental verification that absorption at OD₂₆₆ is more for denatured DNA as compared to native double stranded DNA. reversal of the same following DNA renaturation. Kinetics of DNA renaturation as a function of DNA size.
- Identification of an unknown sample as DNA, RNA or protein using available laboratory tools. (Optional Experiments)
- 4. Biophysical methods (Circular Dichroism Spectroscopy, Fluorescence Spectroscopy).

Lever


 Determination of mass of small molecules and fragmentation patterns by Mass Spectrometry.

6. Preparing various stock solutions and working solutions that will be needed for the course.

New Course Introduced

गुरू घासीदास विश्वविद्यालय (केरीय विश्वविद्यालय अधिन्वम 2009 ज्ञ. 25 के अंतर्गत स्वापित केर्रिय विश्वविद्यालय) कोनी, बिलासपुर - 495009 (छ.ग.)

गुरू घासीदास विश्वविद्यालय (केंद्रीय विश्वविव्वाल अधिन्यम 2008 इ. 25 के अंतर्गत स्वापित केंद्रीय विश्वविद्याला) कोनी, बिलासपुर - 495009 (छ.ग.)

Guru Ghasidas Vishwavidyalaya (A Central University Established by the Central Universities Act 2009 No. 25 of 2009) Koni, Bilaspur – 495009 (C.G.)

Semester Two		
Genetic Engineering Credits	Course Objectives The objectives of this course are to teach students with various approaches to conducting genetic engineering and their applications in biological research as well as in biotechnology industries. Genetic engineering is a technology that hasbeen developed based on our fundamental understanding of the principles of molecular biology and this is reflected in the contents of this course.	Student Learning Outcomes Given the impact of genetic engineering in modern society, the students should be endowed with strong theoretical knowledge of this technology. In conjunction with the practicals in molecular biology & genetic engineering, the students should be able to take up biological research as well as placement in the relevant biotech industry.
Unit I Introduction and tools for genetic engineering 6 lectures	genetic engineering experiment; restriction	g, radioactive and non-radioactive probes, h, south-western and far-western and colony
Unit II Different types of vectors 7 lectures	Plasmids; Bacteriophages; M13 mp vectors; PUC19 and Bluescript vectors, hagemids; Lambda vectors; Insertion and Replacement vectors; Cosmids; Artificial chromosome vectors (YACs; BACs); Principles for maximizing gene expression expression vectors; pMal; GST; pET-based vectors; Protein purification; His-tag; GST-tag; MBP-tag <i>etc.</i> ; Intein-based vectors; Inclusion bodies; methodologies to reduce formation of inclusion bodies; mammalian expression and replicating vectors; Baculovirus and <i>Pichia</i> vectors system, plant based vectors, Ti and Ri as vectors, yeast vectors, shuttle vectors.	
Unit III Different types of PCR techniques 7 lectures	Principles of PCR: primer design; fidelity of thermostable enzymes; DNA polymerases; types of PCR – multiplex, nested; reverse-transcription PCR, real time PCR, touchdown PCR, hot start PCR, colony PCR, asymmetric PCR, cloning of PCR products; T-vectors; proof reading enzymes; PCR based site specific mutagenesis; PCR in molecular diagnostics; viral and bacterial detection; sequencing methods; enzymatic DNA sequencing; chemical sequencing of DNA; automated DNA sequencing; RNA sequencing; chemical synthesis of oligonucleotides; mutation detection: SSCP, DGGE, RFLP.	
Unit IV Gene manipulation and protein-DNA interaction 7 lectures	Insertion of foreign DNA into host cells; the construction of libraries; isolation of mRNA cDNA synthesis; cDNA and genomic librar arrays, cDNA arrays and oligo arrays; study mobility shift assay; DNase footprinting immunoprecipitation; protein-protein interact phage display.	A and total RNA; reverse transcriptase and ries; construction of microarrays – genomic of protein-DNA interactions: electrophoretic g; methyl interference assay, chromatin
Unit V Gene silencing and genome editing technologies ^{13 lectures}	Gene silencing techniques; introduction to construction of siRNA vectors; principle knockouts and gene therapy; creation of t introduction to methods of genetic manipulati	and application of gene silencing; gene ransgenic plants; debate over GM crops;

New Course Introduced

गुरू घासीदास विश्वविद्यालय (केंद्रीय विस्तविद्यालय अधिनेयन 2009 ज. 25 के अंतर्गत स्वापित केंद्रीय विश्ववेधवाल्य) कोनी, बिलासपुर - 495009 (छ.ग.)

Bioinformatics

Credits

ry all

Guru Ghasidas Vishwavidyalaya (A Central University Established by the Central Universities Act 2009 No. 25 of 2009) Koni, Bilaspur – 495009 (C.G.)

Course Objectives

The objectives of this course are to provide theory and practical experience of the use of common computational tools and databases which facilitate investigation of molecular biology and evolution-related concepts.

Student Learning Outcomes Student should be able to :

- Develop an understanding of basic theory of these computational tools;
- Gain working knowledge of these computational tools and methods;
- Appreciate their relevance for investigating specificcontemporary biological questions;
- Critically analyse and interpret results of their study.

Ophate

New Course Introduced

गुरू घासीदास विश्वविद्यालय (केंद्रीय विस्तविवाल्य अधिनेत्रम 2008 इ. 25 के अंतर्गत स्वापित केन्द्रीय विस्वविवाल्य) कोनी, बिलासपुर - 495009 (छ.ग.)

Guru Ghasidas Vishwavidyalaya (A Central University Established by the Central Universities Act 2009 No. 25 of 2009) Koni, Bilaspur - 495009 (C.G.)

Unit I Bioinformatics basics 5 lectures	Bioinformatics basics: Computers in biology and medicine; Introduction to Unix and Linux systems and basic commands; Database concepts; Protein and nucleic acid databases; Structural databases; Biological XML DTD's; pattern matching algorithm basics; databases and search tools: biological background for sequence analysis; Identification of protein sequence from DNA sequence; searching of databases similar sequence; NCBI; publicly available tools; resources at EBI; resources on web; database mining tools.
Unit II DNA sequence analysis 5 lectures	DNA sequence analysis: gene bank sequence database; submitting DNA sequences to databases and database searching; sequence alignment; pairwise alignment techniques; motif discovery and gene prediction; local structural variants of DNA, their relevance in molecular level processes, and their identification; assembly of data from genome sequencing.
Unit III Multiple sequence analysis 5 lectures	Multiple sequence analysis; multiple sequence alignment; flexible sequence similarity searching with the FASTA3 program package; use of CLUSTALW and CLUSTALX for multiple sequence alignment; submitting DNA protein sequence to databases: where and how to submit, SEQUIN, genome centres; submitting aligned sets of sequences, updating submitted sequences, methods of phylogenetic analysis.
Unit IV Protein modelling 5 lectures	Protein modelling: introduction; force field methods; energy, buried and exposed residues; side chains and neighbours; fixed regions; hydrogen bonds; mapping properties onto surfaces; fitting monomers; RMS fit of conformers; assigning secondary structures; sequence alignment- methods, evaluation, scoring; protein completion: backbone construction and side chain addition; small peptide methodology; software accessibility; building peptides; protein displays; substructure manipulations, annealing.
Unit V Protein structure prediction and virtual library 6 lectures	Protein structure prediction: protein folding and model generation; secondary structure prediction; analyzing secondary structures; protein loop searching; loop generating methods; homology modelling: potential applications, description, methodology, homologous sequence identification; align structures, align model sequence; construction of variable and conserved regions; threading techniques; topology fingerprint approach for prediction; evaluation of alternate models; structure prediction on a mystery sequence; structure aided sequence techniques of structure prediction; structural profiles, alignment algorithms, mutation tables, prediction, validation, sequence based methods of structure prediction, prediction using inverse folding, fold prediction; significance analysis, scoring techniques, sequence-sequence scoring; protein function prediction; elements of in silico drug design;Virtual library: Searching PubMed, current content, science citation index and current awareness services, electronic journals, grants and funding information.
Johntt	 Recommended Textbooks and References: Lesk, A. M. (2002). Introductionto Bioinformatics. Oxford: Oxford University Press. Mount, D. W. (2001). Bioinformatics: Sequence and Genome Analysis. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press. Baxevanis, A. D., & Ouellette, B. F. (2001). Bioinformatics: a Practical Guidetothe Analysis of Genes and Proteins. New York: Wiley-Interscience. Pevsner, J. (2015). Bioinformatics and Functional Genomics. Hoboken, NJ.: Wiley-Blackwell. Bourne, P. E., & Gu, J. (2009). Structural Bioinformatics. Hoboken, NJ: Wiley-Liss. Lesk, A.M. (2004). IntroductiontoProteinScience: Architecture, Function, and Genomics. Oxford: Oxford University Press.
w Course Introduced	Criteria – I (1.2

गुरू घासीदास विश्वविद्यालय (केंद्रीय विश्वविव्वाल अधिन्यम 2008 इ. 25 के अंतर्गत स्वापित केंद्रीय विश्वविद्याला) कोनी, बिलासपुर - 495009 (छ.ग.)

Genomics and Proteomics Credits	Course Objectives The objectives of this course is to provide introductory knowledge concerning genomics, proteomics and their applications.	Student Learning Outcomes Studentsshould beabletoacquire knowledge and understanding of fundamentals of genomics and proteomic transcriptomics and metabolomics and their applications in various applied areas of biology.
Unit I Basics of genomics and proteomics 3 lectures	Brief overview of prokaryotic and eukaryot DNA: bacterial plasmids, mitochondria and	
Unit II Genome mapping 4 lectures	Genetic and physical maps; markers for gen for gene mapping, physical mapping, linkag technique in gene mapping, somatic cell hyl hybridization, comparative gene mapping.	e analysis, cytogenetic techniques, FISH
Unit III Genome sequencing projects 3 lectures	Human Genome Project, genome sequencin accessing and retrieving genome project info	
Unit IV Comparative genomics 5 lectures	Identification and classification of organism typing/sequencing, SNPs; use of genomes to emerging diseases and design new drugs; de	understand evolution of eukaryotes, track
Unit V Proteomics 5 lectures	Aims, strategies and challenges in proteomic isoelectric focusing, mass spectrometry, MA databases.	
Unit VI Functional genomics and proteomics 8 lectures	Transcriptome analysis for identification and functional annotation of gene, Contig assembly, chromosome walking and characterization of chromosomes, mining functional genes in genome, gene function- forward and reverse genetics, gene ethics; protein- protein and protein-DNA interactions; protein chips and functional proteomics; clinical and biomedical applications of proteomics; introduction to metabolomics, lipidomics, metagenomics and systems biology.	
abhett	 Recommended Textbooks and Reference Primrose, S. B., Twyman, R. M., Primros Principles of Gene Manipulation and Ge Liebler, D. C. (2002). Introduction to Pro Totowa, NJ: Humana Press. Campbell, A. M., & Heyer, L. J. (2003). Dis Bioinformatics. San Francisco: Benjamin 	e, S. B., & Primrose, S. B. (2006). nomics. Malden, MA: Blackwell Pub. teomics: Tools for the New Biology. covering Genomics, Proteomics, and

गुरू घासीदास विश्वविद्यालय (केंद्रीय विश्वविव्वाल अधिन्यम 2008 इ. 25 के अंतर्गत स्वापित केंद्रीय विश्वविद्याला) कोनी, बिलासपुर - 495009 (छ.ग.)

Guru Ghasidas Vishwavidyalaya (A Central University Established by the Central Universities Act 2009 No. 25 of 2009) Koni, Bilaspur – 495009 (C.G.)

Molecular Diagnostics Credits	Course Objectives The objectives of this course are to sen- sitize students about recent advances in molecular biology and various facets of molecular medicine which has potential to profoundly alter many aspects of modern medicine including pre- or post-natal analysis of genetic diseases and identifica- tion of individuals predisposed to disease ranging from common cold to cancer.	Student Learning Outcomes Students should be able to understand various facets of molecular procedures and basics of genomics, proteomics and metabolomics that could be employed in early diagnosis and prognosis of human diseases.
Unit I Genome biology in health and disease 4 lectures		somal structure & mutations; DNA polymor- nd genetically determined adverse reactions
Unit II Genome: resolution, detection & analysis 5 lectures	PCR: Real-time; ARMS; Multiplex; ISH; FISH; ISA; RFLP; DHPLC; DGGE; CSCE; SSCP; Nucleic acid sequencing: new generations of automated sequencers; Microarray chips; EST; SAGE; microarray data normalization & analysis; molecular markers: 16S rRNA typing; Diagnostic proteomics: SELDI-TOF-MS; Bioinformatics data acquisition & analysis.	
Unit III Diagnostic metabolomics 2 lectures	Metabolite profile for biomarker detection the body fluids/tissues in various metabolic disorders by making using LCMS & NMR technological platforms.	
Unit IV Detection and identity of microbial diseases 4 lectures	Direct detection and identification of pathogenic-organisms that are slow growing or currently lacking a system of <i>in vitro</i> cultivation as well as genotypic markers of microbial resistance to specific antibiotics.	
Unit V Detection of inherited diseases 4 lectures	Exemplified by two inherited diseases for which molecular diagnosis has provided a dramatic improvement of quality of medical care: Fragile X Syndrome: Paradigm of new mutational mechanism of unstable triplet repeats, von-Hippel Lindau disease: recent acquisition in growing number of familial cancersyndromes.	
Unit VI Molecular oncology 5 lectures	Detection of recognized genetic aberrations in clinical samples from cancer patients; types of cancer-causing alterations revealed by next-generation sequencing of clinical isolates; predictive biomarkers for personalized onco-therapy of human diseases such as chronic myeloid leukemia, colon, breast, lung cancer and melanoma as well as matching targeted therapies with patients and preventing toxicity of standard systemic therapies.	
Unit VII Quality assurance and control 1 lecture	Quality oversight; regulations and approved	testing.
abutt	Recommended Textbooks and Reference 1. Campbell, A. M., & Heyer, L. J. (2006). Dis- and Bioinformatics. San Francisco: Ben 2. Brooker, R. J. (2009). Genetics: Analysis & Constructions	covering Genomics, Proteomics,

t

गुरू घासीदास विश्वविद्यालय (केंद्रीय विस्तविद्यालय अधिनियम 2009 क. 25 के अंतर्गत स्वापित केंद्रीय विस्ववेद्यालय) कोनी, बिलासपुर - 495009 (छ.ग.)

Guru Ghasidas Vishwavidyalaya (A Central University Established by the Central Universities Act 2009 No. 25 of 2009) Koni, Bilaspur – 495009 (C.G.)

 Glick, B. R., Pasternak, J. J., & Patten, C. L. (2010). Molecular Biotechnology: Principles and Applications of Recombinant DNA. Washington, DC: ASM Press.
 Coleman, W.B., & Tsongalis, G.J. (2010). Molecular Diagnostics: for the Clinical Laboratorian. Totowa, NJ: Humana Press.

Course Objectives

The objectives of this course are to give background on history of science, emphasizing methodologies used to do research, use framework of these methodologies for understanding effective lab practices and scientific communication and appreciate scientific ethics.

Student Learning Outcomes Students should be able to:

- Understand history and methodologies of scientific research, applying these to recent published papers;
- Understand and practice scientific reading, writing and presentations;
 Appreciate scientific ethics through
- case studies.

Research Methodology and Scientific Communication Skills

Credits

Unit I Historyofscienceand science methodologies 8 lectures

Empirical science; scientific method; manipulative experiments and controls; deductive and inductive reasoning; descriptive science; reductionist vs holistic biology.

Unit II Preparation for research 2 lectures

Choosing a mentor, lab and research question; maintaining a lab notebook.

Process of

Process of communication 5 lectures

Unit IV Scientific communication 9 lectures Concept of effective communication- setting clear goals for communication; determining outcomes and results; initiating communication; avoiding breakdowns while communicating; creating value in conversation; barriers to effective communication; non-verbal communication-interpreting non-verbal cues; importance of body language, power of effective listening; recognizing cultural differences; Presentation skills - formal presentation skills; preparing and presenting using over-head projector, PowerPoint; defending interrogation; scientific poster preparation & presentation; participating in group discussions; Computing skills for scientific research - web browsing for information search; search engines and their mechanism of searching; hidden Web and its importance in scientific research; internet as a medium of interaction between scientists; effective email strategy using the right tone and conciseness.

Technical writing skills - types of reports; layout of a formal report; scientific writing skills - importance of communicating science; problems while writing a scientific document; plagiarism, software for plagiarism; scientific publication writing: elements of a scientific paper including abstract, introduction, materials & methods, results, discussion, references; drafting titles and framing abstracts; publishing scientific papers - peer review process and problems, recent developments such as open access and non-blind review; plagiarism; characteristics of effective technical communication; scientific presentations; ethical issues; scientific misconduct.

abhatt

-Car AN

गुरु घासीदास विश्वविद्यालय (केन्रेय विश्वविद्यालय अधिन्यम 2009 इ. 25 के अंतर्गत स्वापित केन्न्रेय विश्वविद्यालय) कोनी, बिलासपुर - 495009 (छ.ग.)

ſ

	 Recommended Textbooks and References: Valiela, I. (2001). Doing Science: Design, Analysis, and Communicationof Scientific Research. Oxford: Oxford University Press. On Being a Scientist: a Guideto Responsible Conduct in Research. (2009). Washington, D.C.: National Academies Press. Gopen, G. D., & Smith, J. A. The Science of Scientific Writing. American Scientist, 78 (Nov-Dec 1990), 550-558. Mohan, K., & Singh, N. P. (2010). Speaking English Effectively. Delhi: Macmillan India. Movie: Naturally Obsessed, The Making of a Scientist.
Laboratory IV: Molecular Biology and Genetic	Course Objectives The objectives of this course are to provide students with experimental knowledge of molecular biology and genetic engineering. Student Learning Outcomes Students should be able to gain hands- on experience in gene cloning, protein expression and purification. This experience would enable them to begin a career in industry that engages in genetic engineering as well as in research laboratories conducting fundamental research.
Syllabus	 Concept of lac-operon: a) Lactose induction of B-galactosidase.
a state of the	 b) Glucose Repression. c) Diauxic growth curve of <i>E.coli</i>
	2 UV mutagenesis to isolate amino acidauxotroph
	 Phage titre with epsilon phage/M13 Genetic Transfer-Conjugation, gene mapping
	 Genetic Transfer-Conjugation, gene mapping Plasmid DNA isolation and DNA quantitation
	6 Restriction Enzyme digestion of plasmid DNA
	 Agarose gel electrophoresis Polymerase Chain Reaction and analysis by agarose gel electrophoresis
	 Polymerase Chain Reaction and analysis by agarose gel electrophoresis Vector and Insert Ligation
	10. Preparation of competent cells
	 Transformation of <i>E.coli</i> with standard plasmids, Calculation of transformation officiance.
	transformation efficiency 12. Confirmation of the insert by Colony PCR and Restriction mapping
	13. Expression of recombinant protein, concept of soluble proteins and inclusion
	body formation in <i>E.coli</i> , SDS-PAGEanalysis
	 Purification of His-Tagged protein on Ni-NTA columns a) Random Primer labeling
	b) Southern hybridization.
	Recommended Textbooks and References:
	 Green, M. R., & Sambrook, J. (2012). Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
Oblist	Read allow Dr

गुरू घासीदास विश्वविद्यालय (केरीय विश्वविद्यालय अधिनेवर 2009 इ. 25 के अंतर्गत स्थापित केरीय विश्वविद्यालय) कोनी, बिलासपुर - 495009 (छ.ग.)

Guru Ghasidas Vishwavidyalaya (A Central University Established by the Central Universities Act 2009 No. 25 of 2009) Koni, Bilaspur – 495009 (C.G.)

5 El-Mansi, M., & Bryce, C.F. (2007). Fermentation Microbiology and Biotechnology. Boca Raton: CRC/Taylor & Francis.

Boca Raton: CRC/Taylor & Francis.	
Course Objectives This course is broad-based in nature encompassingseveralnewtechnologies that current experimental researchers areemployingtoprobecomplexsystem biologyquestionsinlife-sciences. The objectivesofthiscoursearetoteachbasics of the new principles to students so as to appreciate current-day research tool-kit better.	Student Learning Outcomes Students should be to learn history, theoretical basis and basic understanding of latest technologies in area of biotechnology. They should also be able to learn about various applications of thesetechnologies. Thestudentsmayalso learn one application in depth through an assignment and/orseminar.
Basic Microscopy: Light Microscopy: lense Approach, Darkfield; Phase Contrast; Differ and fluorescence microscopy: what is fluore fluorescence microscope; optical arrangeme dichroic mirror, and barrier, optical layout fi illumination, binning; recording color; three boosting the signal.	rential Interference Contrast; fluorescence escence, what makes a molecule fluorescent, int, light source; filter sets: excitation filter, or image capture; CCD cameras; back
Ionizationtechniques;massanalyzers/overvie ofpeptides;proteomics,nanoLC-MS;Phospho spectroscopy in structural biology; imagingr	pproteomics; interaction proteomics, mass
High throughput screens in cellular systems, experimental methods to generate the omics modeling and designing testable predictions.	data, bioinformatics analyses, mathematica
X-raydiffractionmethods, solution&solid-stat angle X-ray scattering, Atomic forcemicrosco	
History of its discovery, elucidation of the m themolecularplayers, developmentofapplicati geneticstudies, promiseofthetechnology as an e	onsforinvivogenomeengineeringfor
	 Course Objectives This course is broad-based in nature encompassingseveralnewtechnologies that current experimental researchers areemployingtoprobecomplexsystem biologyquestionsinlife-sciences. The objectivesofthiscoursearetoteachbasics of the new principles to students so as to appreciate current-day research tool-kit better. Basic Microscopy: Light Microscopy: lens Approach, Darkfield; Phase Contrast; Diffe and fluorescence microscopy: what is fluore fluorescence microscopy: optical arrangeme dichroic mirror, and barrier, optical layout fi illumination, binning; recording color; three boosting the signal. Ionizationtechniques;massanalyzers/overvie ofpeptides;proteomics,nanoLC-MS;Phosphe spectroscopy in structural biology; imagingr High throughput screens in cellular systems, experimental methods to generate the omics modeling and designing testable predictions X-raydiffractionmethods,solution&solid-stat angle X-ray scattering, Atomic forcemicrosco History of its discovery, elucidation of the m themolecularplayers,developmentofapplicati

Johnt

Que Kallyon

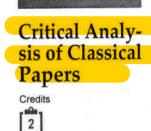
New Course Introduced

Criteria – I (1.2.1)

-

गुरू घासीदास विश्वविद्यालय (केंद्रीय विश्वविद्यालय अधिन्यम 2009 क. 25 के अंतर्गत स्वापित केंद्रीय विश्वविद्यालय) कोनी, बिलासपुर - 495009 (छ.ग.)

Guru Ghasidas Vishwavidyalaya (A Central University Established by the Central Universities Act 2009 No. 25 of 2009) Koni, Bilaspur – 495009 (C.G.)


Nanobodies 4 lectures	development of antibody against native proteins, nanobody as a tool for protein structure-function studies, use of nanobodies for molecular imaging, catabolic antibodies using nanobodies.
1864	Recommended Textbooks and References:
	1. Campbell, I. D. (2012). Biophysical Techniques. Oxford: Oxford University Press.
	2 Serdyuk, I. N., Zaccai, N. R., & Zaccai, G. (2007). Methods in Molecular Biophysics
	Structure, Dynamics, Function. Cambridge: Cambridge University Press.
	 Phillips, R., Kondev, J., & Theriot, J. (2009). Physical Biology of the Cell. New York: Garland Science.
	 Nelson, P.C., Radosavljević, M., & Bromberg, S. (2004). Biological Physics: Energy,
	Information, Life. New York: W.H.Freeman.
	5 Huang, B., Bates, M., & Zhuang, X. (2009). Super-Resolution Fluorescence
	Microscopy. Annual Review of Biochemistry, 78(1), 993-1016. doi:10.1146/annure
	biochem.77.061906.092014.
	6 Mohanraju, P., Makarova, K. S., Zetsche, B., Zhang, F., Koonin, E. V., & Oost, J. V. (2016) Diverse Evolutioners: Boots and Machanistic Variations of the CDISPR Care.
	(2016). Diverse Evolutionary Roots and Mechanistic Variations of the CRISPR-Cas Systems. Science, 353(6299). doi:10.1126/science.aad5147.
	 Z. Lander, E. (2016). The Heroes of CRISPR. Cell, 164(1-2), 18-28. doi:10.1016/j.
	cell.2015.12.041.
	8 Ledford, H. (2016). The Unsung Heroes of CRISPR. Nature, 535(7612), 342-344.
	doi:10.1038/535342a.
	9. Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E.
	(2012). A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive
	Bacterial Immunity. Science, 337(6096),816-821. doi:10.1126/science.1225829.
	 Hamers-Casterman, C., Atarhouch, T., Muyldermans, S., Robinson, G., Hammer, C., Songa, E. B., Hammers, R. (1993). Naturally Occurring Antibodies Devoid of Lig
	Chains. Nature, 363(6428), 446-448. doi:10.1038/363446a0.
	11. Sidhu, S. S., & Koide, S. (2007). Phage Display for Engineering and Analyzing
	Protein Interaction Interfaces. Current Opinionin Structural Biology, 17(4), 481-48
	doi:10.1016/j.sbi.2007.08.007.
	12. Steyaert, J., & Kobilka, B. K. (2011). Nanobody Stabilization of G Protein-Coupled
	Receptor Conformational States. Current Opinion in Structural Biology,
	21(4), 567-572. doi:10.1016/j.sbi.2011.06.011.
	 Vincke, C., & Muyldermans, S. (2012). Introduction to Heavy Chain Antibodies and Derived Nanobodies. Single Domain Antibodies, 15-26. doi:10.1007/978-1-61779
	968-6 2.
	14. Verheesen, P., & Laeremans, T.(2012). Selection by Phage Display of Single
	Domain Antibodies Specific to Antigens in their Native Conformation. Single
	Domain Antibodies, 81-104. doi:10.1007/978-1-61779-968-6_6.
	15. Li, J., Xia, L., Su, Y., Liu, H., Xia, X., Lu, Q. Reheman, K. (2012). Molecular Imprin
	of Enzyme Active Site by Camel Nanobodies. Journal of Biological Chemistry J. Biol
	 Chem., 287(17), 13713-13721. doi:10.1074/jbc.m111.336370. Sohier, J., Laurent, C., Chevigné, A., Pardon, E., Srinivasan, V., Wernery, U. Galler
	 Sonier, J., Laurent, C., Chevigne, A., Pardon, E., Srinivasan, V., Wernery, U. Galler M. (2013). Allosteric Inhibition of VIMMetallo-β-Lactamases by a Camelid Nam
	Biochemical Journal, 450(3), 477-486. doi:10.1042/bj20121305.
	17. Chakravarty, R., Goel, S., & Cai, W. (2014). Nanobody: The "Magic Bullet" for
	Molecular Imaging? Theranostics, 4(4), 386-398. doi:10.7150/thno.8006.
H	ward and
Johnt	- why all
an	1-6. 1.
120	Ma

-

गुरू घासीदास विश्वविद्यालय (केरीय विश्वविद्यालय अधिनेवर 2009 इ. 25 के अंतर्गत स्वापित केरीय विश्वविद्यालय) कोनी, बिलासपुर - 495009 (छ.ग.)

Guru Ghasidas Vishwavidyalaya (A Central University Established by the Central Universities Act 2009 No. 25 of 2009) Koni, Bilaspur – 495009 (C.G.)

Course Objectives The objectives of this course are to familiarize students with classic literature to make them appreciate how groundbreaking discoveries were made without, necessarily, use of high-end technologies.

Student Learning Outcomes Students should be able to train in the exercise of hypothesis building and methods of addressing the hypothesis with readily available technology.

How does the Course Module work? Students may be divided in groups and each group may be responsible for one classical paper. Each week there may be a 1.5 hour presentation cum discussion for each of the papers. At the end of the semester each student will be asked to write a mini-review (2-3 pages long) on any one classical paper, other than the one he/she presented/discussed.

A list of sixteen classic papers and some suggested reference materials:

Molecular Biology	 Pneumococcal types: Induction of transformation by a desoxyribonucleic acid fraction isolated from <i>Pneumococcus</i> type III. Avery OT, Macleod CM, McCarty M.; J Exp Med. 1944 Feb 1;79(2):137-58. Note: This paper demonstrates that DNA is the transforming Principle originally described by Fredrick Griffith. Independent functions of viral protein and nucleic acid in growth of bacteriophage Hershey AD and Chase M.; J Gen Physiol. 1952 May;36(1):39-56. Note: Note: This paper demonstrates that DNA, and not protein, component of phages enter bacterial cells. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid Watson JD and Crick FH; Nature. 1953 Apr 25;171(4356):737-8 Note: In this one page paper Watson and Crick first described the structure of DNA double helix Study help - Watson_Crick_Nature_1953_annotated Transposable mating type genes in<i>Saccharomyces cerevisiae</i> James Hicks, Jeffrey N. Strathern & Amar J.S. Klar; Nature 282, 478-483,1979 Note: This paper provided evidence for 'cassette hypothesis' of yeast mating type switches <i>i.e.</i> interconversion of mating types in yeast (<i>S. cerevisiae</i>) occurs by DNA rearrangement. Messelson & Stahl experiment demonstrating semi-conservative replication of DNA. Meselson M and Stahl FW.; Proc Natl Acad Sci U S A. 1958 Jul 15;44(7):671-82 Note: The experiment demonstrating semi-conservative mode of DNA replication is referred to as "the most beautiful experiment in biology" <i>In vivo</i> alteration of telomeras eRNAs
	Guo-Liang Yu, John D. Bradley, Laura D. Attardi & Elizabeth H. Blackburn; Nature 344, 126-132, 1990 Note: This paper demonstrates that the telomerase contains the template for telomere synthesis
Syllabus Cell Biology Odhatt	 A protein-conducting channel in the endoplasmic reticulum Simon SM AND Blobel G.; Cell. 1991 May 3;65(3):371-80 Note: This paper demonstrates the existence of a protein conducting channel Study help - A brief history of Signal Hypothesis

गुरू घासीदास विश्वविद्यालय (केरीय विश्वविद्यालय अधिन्यम 2009 इ. 25 के अंतर्गत स्वापित केरीय विश्वविद्यालय) कोनी, बिलासपुर - 495009 (छ.ग.)

	2 Identification of 23 complementation groups required for post-translational events
	in the yeast secretory pathway
	Novick P, Field C, Schekman R.; Cell. 1980 Aug;21(1):205-15
	Note: In this groundbreaking paper Randy Schekman's group used a mutagenesis
	screen for fast sedimenting yeast mutants to identify genes involved in cell secretion 3 A yeast mutant defective at an early stage in import of secretory protein precursors
	into the endoplasmic reticulum
	Deshaies RJ and Schekman R.; J Cell Biol. 1987 Aug;105(2):633-45
	Note: Using another yeast mutation screen Schekman lab identifies Sec61, a
	component of ER protein Conducting Channel (PCC)
	Suggested reference paper - A biochemical assay for identification of PCC.
	4. Reconstitution of the Transport of Protein between Successive Compartments
	of the Golgi
	Balch WE, Dunphy WG, Braell WA, Rothman JE.; Cell. 1984 Dec; 39(2 Pt 1):405-16
	Note: This paper describes setting up of an <i>in vitro</i> reconstituted system for
	transport between golgi stacks which eventually paved the way for identification of
	 most of the molecular players involved in these steps including NSF, SNAP <i>etc.</i> A complete immunoglobulin gene is created by somatic recombination
8	Brack C, Hirama M, Lenhard-Schuller R, Tonegawa S.; Cell. 1978 Sep;15(1):1-14
	Note: This study demonstrates DNA level molecular details of somatic
	rearrangement of immunoglobulin gene sequences leading to the generation of
	functionally competent antibody generating gene followingrecombination.
	6. A novel multigene family may encode odorant receptors: a molecular basis for
	odor recognition
	Buck L and Axel R; Cell. 1991 Apr 5;65(1):175-87
	Note: This paper suggests that different chemical odorants associate with different
	cell-specific expression of a transmembrane receptor in Drosophila olfactory
	epithelium where a large family of odorat receptors is expressed.
	7. Kinesin walks hand-over-hand Vildiz A. Tomichica M. Vela P.D. Schuiz P.B. Science, 2004 Jan 20 20245550 (77. 0
	Yildiz A, Tomishige M, Vale RD, Selvin PR.; Science. 2004 Jan 30;303(5658):676-8 Note: This paper shows that kinesin motor works as a two-headed dimeric motor
	walking hand-over-hand rather than like an inchworm on microtubule tract using
	the energy of ATPhydrolysis.
Syllabus	 Mutations affecting segment number and polarity in Drosophila
Developmental	Christiane Nusslein-Volhard and Eric Weischaus; Nature 287, 795-801, 1980
Biology / Genetics	Note: This single mutagenesis screen identified majority of the developmentally important genes not only in flies but in other metazoans as well.
	2 Information for the dorsalventral pattern of the <i>Drosophila</i> embryo is stored
	as maternal mRNA
	Anderson KV and Nüsslein-Volhard C; Nature. 1984 Sep 20-26;311(5983):223-7
	Note: This landmark paper demonstrated that early dorsal-ventral pattern
	information is stored as maternal mRNA in flies and devised the method of
	identifying genes encoding such genes
	3 Hedgehog signalling in the mouse requires intraflagellar transport proteins
	Huangfu D, Liu A, Rakeman AS, Murcia NS, Niswander L, Anderson KV.; Nature. 2003 Nov 6;426(6962):83-7
	Note: One of the architects of original fly mutagenesis screens conducted a mouse
	mutagenes screen which identified a gene Kif3a as a major component of hedgehog
	signaling pathway. Eventually this discovery revolutionizes our understanding of
	mechanisms of action of signaling pathways by demonstrating central role of
14	cillia in it.
Abhatt	Suggested Reference paper - Design and execution of a embryonic lethal mutation
(712)-	screen in mouse.
010.00	> retain 0-
	V-b · · ·

गुरू घासीदास विश्वविद्यालय (केन्द्रीय विश्वविद्यालय अधिनियम 2009 क्र. 25 के अंतर्गत स्थापित केन्द्रीय विश्वविद्यालय) कोनी, बिलासपुर - 495009 (छ.ग.)

Guru Ghasidas Vishwavidyalaya (A Central University Established by the Central Universities Act 2009 No. 25 of 2009) Koni, Bilaspur - 495009 (C.G.)

- 3 Onetti, A., & Zucchella, A. Business Modeling for Life Science and Biotech Companies: Creating Value and Competitive Advantage with the Milestone Bridge. Routledge.
- Jordan, J.F. (2014). Innovation, Commercialization, and Start-Ups in LifeSciences. 4 London: CRC Press.
- Desai, V.(2009). The Dynamics of Entrepreneurial Development and Management. 5. New Delhi: Himalaya Pub. House.

Intellec Propert Rights **Biosafet** Bioethi

Credits 2

OBhatt

Intellectual Property Rights, Biosafety and Bioethics Credits	 Course Objectives The objectives of this course are: To provide basic knowledge on intellectual property rights and their implications in biological researchand product development; To become familiar with India's IPR Policy; To learn biosafety and risk assessment of products derived from biotechnolo- gy and regulation of such products; To become familiar with ethical issues in biological research. This course will focus on consequences of biomedical research technologiessuch as cloning of whole organisms, genetic modifications, DNA testing. 	 Student Learning Outcomes On completion of this course, students should be able to: Understand the rationale for and against IPR and especiallypatents; Understand why India has adopted an IPR Policy and be familiar with broad outline of patent regulations; Understand different types of intellectual property rights in general and protection of products derived from biotechnology research and issues related to application and obtaining patents; Gain knowledge of biosafety and risk assessment of products derived from recombinant DNA research and environmental release of genetically modified organisms, national and international regulations; Understand ethical aspects related to biological, biomedical, health care and biotechnology research.
Unit I Introduction to IPR 5 lectures	in R&D IPs of relevance to biotechnology GATT, WTO, WIPO and TRIPS; plant var	knowledge, geographical indications, mework for the protection of IP; IP as a factor and few case studies; introduction to history of iety protection and farmers rights act; concept art"; patent databases - country-wise patent
Unit II Patenting 5 lectures	Treaties; Budapest Treaty; Patent Cooperat for filing a PCT application; role of a Coun precautions before patenting-disclosure/no and guidelines including those of Natior regulatory bodies, fee structure, time fran and complete specifications; PCT and co patenting-requirement, procedures and introduction to existing schemes; publicati	Patent Act 1970; recent amendments; WIPO tion Treaty (PCT) and implications; procedure try Patent Office; filing of a patent application; n-disclosure - patent application-forms al Bio-diversity Authority (NBA) and other mes; types of patent applications: provisional powentional patent applications; international costs; financial assistance for patenting- on of patents-gazette of India, status in Europe scope, litigation, case studies and examples;

commercialization of patented innovations; licensing - outright sale, licensing, royalty; patenting by research students and scientists-university/organizational rules in India and abroad, collaborative research - backward and forward IP; benefit/credit sharing among

parties/community, commercial (financial) and non-commercial incentives.

Er X alx

New Course Introduced

Criteria - I (1.2.1)

गुरू घासीदास विश्वविद्यालय (केंद्रीय विश्वविव्वाल अधिन्यम 2008 इ. 25 के अंतर्गत स्वापित केंद्रीय विश्वविद्याला) कोनी, बिलासपुर - 495009 (छ.ग.)

Guru Ghasidas Vishwavidyalaya (A Central University Established by the Central Universities Act 2009 No. 25 of 2009) Koni, Bilaspur – 495009 (C.G.)

Biosafety 5 lectures	Biosafety and Biosecurity - introduction; historical background; introduction to biological safety cabinets; primary containment for biohazards; biosafety levels; GRAS organisms, biosafety levels of specific microorganisms; recommended biosafety levels for infectious agents and infected animals; definition of GMOs & LMOs; principles of safety assessment of transgenic plants – sequential steps in risk assessment; concepts of familiarity and substantial equivalence; risk – environmental risk assessment and food and feed safety assessment; problem formulation – protection goals, compilation of relevant information, risk characterization and development of analysis plan; risk assessment of transgenic crops vs cisgenic plants or products derived from RNAi, genome editing tools.
Unit IV National and international regulations 5 lectures	International regulations – Cartagena protocol, OECD consensus documents and Codex Alimentarius; Indian regulations – EPA act and rules, guidance documents, regulatory framework – RCGM, GEAC, IBSC and other regulatory bodies; Draft bill of Biotechnology Regulatory authority of India - containments – biosafety levels and category of rDNA experiments; field trails – biosafety research trials – standard operating procedures - guidelines of state governments; GM labeling – Food Safety and Standards Authority of India (FSSAI).
Unit V Bioethics 5 lectures	Introduction, ethical conflicts in biological sciences - interference with nature, bioethics in health care - patient confidentiality, informed consent, euthanasia, artificial reproductive technologies, prenatal diagnosis, genetic screening, gene therapy, transplantation. Bioethics in research – cloning and stem cell research, Humanand animal experimentation, animal rights/welfare, Agricultural biotechnology - Genetically engineered food, environmental risk, labeling and public opinion. Sharing benefits and protecting future generations - Protection of environment and biodiversity – biopiracy.
	Recommended Textbooks and References: 1 Ganguli, P.(2001). Intellectual Property Rights: Unleashing the Knowledge Economy.
	 New Delhi: Tata McGraw-Hill Pub. National IPR Policy, Department of Industrial Policy & Promotion, Ministry of
	Commerce, GoI 3 Complete Reference to Intellectual Property Rights Laws. (2007). Snow White Publication Oct.
	4 Kuhse, H. (2010). Bioethics: an Anthology. Malden, MA: Blackwell.
	5 Office of the Controller General of Patents, Design & Trademarks; Department of Industrial Policy & Promotion; Ministry of Commerce & Industry; Government of India. http://www.ipindia.nic.in/
	 Karen F. Greif and Jon F. Merz, Current Controversies in the Biological Sciences -Case Studies of Policy Challenges from New Technologies, MIT Press
	7 World Trade Organisation. http://www.wto.org
	8 World Intellectual Property Organisation. http://www.wipo.int
*	 International Union for the Protection of New Varieties of Plants. http://www.upov.int National Portal of India. http://www.archive.india.gov.in
	11 National Biodiversity Authority. http://www.arcinve.india.gov.in
	Recombinant DNA Safety Guidelines, 1990 Department of Biotechnology, Ministry
	of Science and Technology, Govt. of India. Retrieved from http://www.envfor.nic.in/ divisions/csurv/geac/annex-5.pdf
	13 Wolt, J. D., Keese, P., Raybould, A., Fitzpatrick, J. W., Burachik, M., Gray, A., Wu,
	F.(2009). Problem Formulation in the Environmental Risk Assessment for Genetically Modified Plants. Transgenic Research, 19(3), 425-436. doi:10.1007/s11248-009-9321-9
Ohatt	¹⁴ Craig, W., Tepfer, M., Degrassi, G., & Ripandelli, D. (2008). An Overview of General Features of Risk Assessments of Genetically Modified Crops. Euphytica, 164(3), 853-880. doi:10.1007/s10681-007-9643-8
	P-62Xolls

1

गुरू घासीदास विश्वविद्यालय (केंद्रीय विश्वविव्यालय अधिनेम 2009 ज्ञ. 25 के अंतर्गत स्वापित केंद्रीय विश्वविद्यालय) कोनी, बिलासपुर - 495009 (छ.ग.)

Guru Ghasidas Vishwavidyalaya (A Central University Established by the Central Universities Act 2009 No. 25 of 2009) Koni, Bilaspur – 495009 (C.G.)

	 Plants. 2008. Guidelines and Standard Operating Procedures for Confined Field Trialsof Regulated Genetically Engineered Plants. 2008. Retrieved from http://www.igmoris.nic.in/guidelines1.asp Alonso, G. M. (2013). Safety Assessment of Food and Feed Derived from GM Crops:UsingProblemFormulationtoEnsure"FitforPurpose"RiskAssessments. Retrieved from http://biosafety.icgeb.org/inhousepublicationscollectionbiosafetyreviews
Project Proposal Preparation& Presentation Credits	Course Objectives The purpose of this course is to help stu- dents organize ideas, material and objec- tives for their dissertation and to begin de- velopment of communication skills and to prepare the students to present their topic of research and explain its importance to their fellow classmates and teachers. Student Learning Outcomes Students should be able to demonstrate the following abilities: Formulate a scientific question; Present scientific approach to solve the problem; Interpret, discuss and communicate scientific results in written form; Gain experience in writing ascientific proposal; Learn how to present and explain their research findings to the audience effectively.
Syllabus Project Proposal Preparation	Selection of research lab and research topic: Students should first select a lab wherein they would like to pursue their dissertation. The supervisor or senior researchers should be able to help the students to read papers in the areas of interest of the lab and help then select a topic for their project. The topic of the research should be hypothesis driven. Review of literature: Students should engage in systematic and critical review of appropriate and relevant information sources and appropriately apply qualitative and/or quantitative evaluation processes to original data; keeping in mind ethical standards of conduct in the collection and evaluation of data and other resources. Writing Research Proposal: With the help of the senior researchers, students should be able to discuss the research questions, goals, approach, methodology, data collection, <i>etc.</i>
	Students should be able to construct a logical outline for the project including analysis steps and expected outcomes and prepare a complete proposal in scientific proposal format for dissertation.
Syllabus PosterPresentation	Students should be able to construct a logical outline for the project including analysis steps and expected outcomes and prepare a complete proposal in scientific proposal

3

गुरू घासीदास विश्वविद्यालय (केंद्रीय निसनिवन अधिनियम 2009 क्र. 25 के अंतर्पत स्वापित केन्द्रीय निसनेवनल) कोनी, बिलासपुर - 495009 (छ.ग.)

Guru Ghasidas Vishwavidyalaya (A Central University Established by the Central Universities Act 2009 No. 25 of 2009) Koni, Bilaspur – 495009 (C.G.)

Laboratory VII:Bioinformatics

Course Objectives The aim of this course is to provide practical training in bioinformatic methods including accessing major public sequence databases, use of different computational tools to find sequences, analysis of protein and nucleic acid sequences by various software packages.

Student Learning Outcomes On completion of this course, students should be able to:

- Describe contents and properties of most important bioinformatics databases;
- Perform text- and sequence-based searches and analyze and discuss results in light of molecular biological knowledge;
- Explain major steps in pairwise and multiple sequence alignment, explain principle and execute pairwise sequence alignment by dynamic programming;
- Predict secondary and tertiary structures of protein sequences.

Syllabus


1. Using NCBI and Uniprot web resources.

2. Introduction and use of various genome databases.

- Sequence information resource: Using NCBI, EMBL, Genbank, Entrez, Swissprot/ TrEMBL, UniProt.
- 4. Similarity searches using tools like BLAST and interpretation of results.
- 5. Multiple sequence alignment using ClustalW.
- 6 Phylogenetic analysis of protein and nucleotidesequences.
- 7. Use of gene prediction methods (GRAIL, Genscan, Glimmer).
- 8. Using RNA structure prediction tools.
- 9. Use of various primer designing and restriction site predictiontools.
- 10. Use of different protein structure prediction databases (PDB, SCOP, CATH).
- 11. Construction and study of protein structures using Deepview/PyMol.
- 12. Homology modelling of proteins.
- Use of tools for mutation and analysis of the energy minimization of protein structures.
- 14. Use of miRNA prediction, designing and target predictiontools.

Semester Four

Dissertation Credits

Johnt

prepare the students to adapt to the research environment and understa

Course Objectives

research environment and understand how projects are executed in a research laboratory. It will alsoenablestudents to learn practical aspects of research and train students in the art of analysis and thesis writing.

erst of she

The objectives of this course are to

Student Learning Outcomes

Students should be able to learn how to select and defend a topic of their research, how to effectively plan, execute, evaluate and discuss their experiments. Students should be able to demonstrate considerable improvement in the following areas:

- In-depth knowledge of the chosen area of research.
- Capability to critically and systematically integrate knowledge to identify issues that must be addressed within framework of specific thesis.

Competence in research design

New Course Introduced

Criteria - I (1.2.1)

गुरू घासीदास विश्वविद्यालय (केंद्रीय विश्वविव्वाल अधिन्यम 2008 इ. 25 के अंतर्गत स्वापित केंद्रीय विश्वविद्याला) कोनी, बिलासपुर - 495009 (छ.ग.)

Guru Ghasidas Vishwavidyalaya (A Central University Established by the Central Universities Act 2009 No. 25 of 2009) Koni, Bilaspur – 495009 (C.G.)

		 and planning. Capability to create, analyse and criticallyevaluatedifferenttechnical solutions. Ability to conductresearch independently. Ability to perform analytical techniques/experimentalmethods. Project managementskills. Report writingskills. Problem solvingskills. Communication and interpersonal skills.
Syllabus Planning & performing experiments	plan, and engage in, an independent and s chosen research topic relevant to biologica systematically identify relevant theory and ologies and evidence, apply appropriate to	
Syllabus Thesis writing	At the end of their project, thesis has to be written giving all the details such as aim, methodology, results, discussion and future work related to their project. Students may aim to get their research findings published in a peer-reviewed journal. If the research findings have application-oriented outcomes, the students may file patent application.	
Recommended		
Electives Biological Imaging	Course Objectives Theobjectivesofthiscoursearetoprovide complete overview of state-of-art live-cell imaging techniques using microscopes currently available in literature.Live- cell imaging techniques allow real-time	Student Learning Outcomes On completion of this course, students shallbeabletogainacompleteoverviewof super-resolution field from fundamentals to state-of-art methods andapplications in biomedical research. The students shall
Biological	The objectives of this course are to provide complete overview of state-of-art live-cell imaging techniques using microscopes currently available in literature. Live-	On completion of this course, students shallbeabletogainacompleteoverviewof super-resolution field from fundamentals to state-of-art methods andapplications

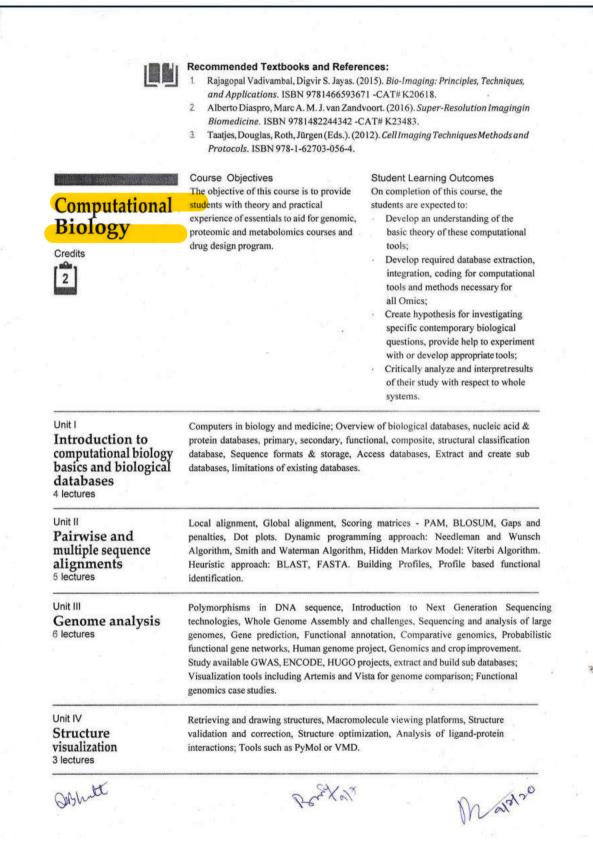
New Course Introduced

Criteria – I (1.2.1)

गुरू घासीदास विश्वविद्यालय (केंद्रीय विश्वविव्वाल अधिन्यम 2008 इ. 25 के अंतर्गत स्वापित केंद्रीय विश्वविद्याला) कोनी, बिलासपुर - 495009 (छ.ग.)

Guru Ghasidas Vishwavidyalaya (A Central University Established by the Central Universities Act 2009 No. 25 of 2009) Koni, Bilaspur – 495009 (C.G.)

	capture images and the epi-fluorescence illumination source can be a mercury lamp, xenon lamp, LED's, <i>etc.</i> Each of light sources require carefully matched interference filters for specific excitation and emission wavelengths of your fluorophore of interest. With widefield microscopy, your specimen is only exposed to excitation light for relatively short time periods as the full aperture of emission light is collected by the objectives. Widefield fluorescence microscopy can be used in combination with other common contrast techniques such as phase contrast and differential interference contract (DIC) microscopy. This combination is useful when performing live-cell imaging to examine general cell morphology or viability while also imaging regions of interest within cells.	
Unit II Confocal laser scanning microscopy (CLSM) 3 lectures	CLSM has ability to eliminate out-of-focus light and information. It is also possible to obtain optical serial sections from thicker specimens. A conjugate pinhole in optical path of confocal microscope prevents fluorescence from outside of focal plane from being collected by photomultiplier detector or imaged by camera. In CLSM, a single pinhole (and single focused laser spot) is scanned across specimen by scanning system. This spot forms a reflected epi-fluorescence image back on original pinhole. When specimen is in focus, fluorescent light from it passes through pinhole to detector. Any out-of-focus light is defocused at pinhole and very little of this signal passes through to detector meaning that background fluorescence is greatly reduced. The pinhole acts as a spatial filter for emission light from the specimen.	
Unit III Spinning discconfocal microscopy(SDCM) 2 lectures	Thismethodutilisesa'NipkowDise' which is a mechanical op aque disc which has a series of thous and so fdrilled or etched pinholes arranged in a sprial pattern. Each illuminated pinhole on disc is imaged by microscope objective to a diffraction-limited spot on region of interest on specimen. The emission from fluorophores passes back though Nipkow disc pinholes and can be observed and captured by a CCD camera. The effect of spinning disc is that many thousands of points on specimen are simultaneously illuminated. Using SDCM to examine a specimen means that real-time imaging (30-frames-per-secondorfaster) can be achieved, which is extremely useful if you are looking at dynamic changes with inliving cells over a wide spectrum of time-scales.	
Unit IV Light-sheet fluorescence microscopy (LSFM, or SPIM) 2 lectures	hismethodenablesonetoperformlive-cellimagingonwholeembryos,tissuesand ellspheroids <i>invivo</i> inagentle mannerwithhightemporalresolutionandinthree mensions. One is able to track cell movement over extended periods of time and follow evelopment of organs and tissues on a cellular level. The next evolution of light-shee uorescence microscopy, termed lattice light-sheet microscopy as developed by Eric etzig (Nobel Prize Laureate 2014 for PALM super-resolution microscopy) will ever low live-cell imaging with super-resolved <i>in vivo</i> cellular localization capabilities.	
Unit V Super-resolved fluorescence microscopy 8 lectures	Super-Resolution in a Standard Microscope: From Fast Fluorescence Imaging the Molecular Diffusion Laws in Live Cells; Photoswitching Fluorophores in Super- Resolution Fluorescence Microscopy; Image Analysis for Single-Molecule Localization Microscopy Deconvolution of Nanoscopic Images; Super-Resolution Fluorescence Microscopy of the Nanoscale Organization in cells; Correlative Live-Cell and Super- Resolution Microscopy and Its Biological Applications; SAX Microscopy and Its Application to Imaging of 3D-Cultured Cells; Quantitative Super-Resolution Microscop for Cancer Biology and Medicine.	
Unit VI Re-scan confocal microscopy 4 lectures	Structured Illumination Microscopy; Correlative Nanoscopy: AFM Super-Resolution (STED/STORM); Stochastic Optical Fluctuation Imaging.	


New Course Introduced

Criteria – I (1.2.1)

清

गुरू घासीदास विश्वविद्यालय (केरीय विश्वविद्यात्वय अधिन्वम 2009 इ. 25 के अंतर्गत स्थापित केर्न्रय विश्वविद्यात्य) कोनी, बिलासपुर - 495009 (छ.ग.)

गुरु घासीदास विश्वविद्यालय (केन्रीय विश्वविद्यालय अधिन्यम 2009 क. 25 के अंतर्गत स्थापित केन्नीय विश्वविद्यालय) कोनी, बिलासपुर - 495009 (छ.ग.)

Molecular modelling 6 lectures	Significance and need, force field methods, energy, buried and exposed residues; side chains and neighbours; fixed regions; hydrogen bonds; mapping properties onto surfaces; RMS fit of conformers and protein chains, assigning secondary structures; sequence alignment: methods, evaluation, scoring; protein curation: backbone construction and side chain addition; different types of protein chain modelling: ab initio, homology, hybrid, loop; Template recognition and alignments; Model ing parameters and considerations; Model analysis and validation; Model optimization; Substructure manipulations, annealing, protein folding and model generation; loop generating methods; loop analysis; Analysis of active sites using different methods in studying protein–protein interactions.	
Unit VI Structure-based drug development 6 lectures	Molecular docking: Types and principles, Semi-flexible docking, Flexible docking; Ligand and protein preparation, Macromolecule and ligand optimization, Ligand conformations, Clustering, Analysis of docking results and validation with known information. Extra- precision docking platforms, Use of Small-molecule libraries, Natural compound libraries for virtual high throughput screenings.	
Unit VII Ligand-based drug development 6 lectures	Quantitative structure activity relationships; Introduction to chemical descriptors like 2D, 3D and Group-based; Radar plots and contribution plots and Activity predictions Pharmacophore modeling, Pharmacophore-based screenings of compound library analysis and experimental validation.	
	 Harbor, NY: Cold Spring Harbor Labo Bourne, P.E., & Gu, J.(2009). Structura NJ: Wiley-Liss. Lesk, A.M.(2004). IntroductiontoProt Genomics. Oxford: Oxford University Campbell, M& Heyer, L. J.(2006), Disco Bioinformatics, Pearson Education. Oprea, T.(2005). Chemoinformatics in Wiley Online Library. 	equence and Genome Analysis. Cold Spring ratory Press. I Bioinformatics. Hoboken, teinScience:Architecture,Function,and Press. overing Genomics, Proteomics and
Drug Discovery and Development Credits	Course Objectives This course will give a broad overview of research and development carried out in industrial setup towards drugdiscovery.	Student Learning Outcomes On completion of this course, students should be able to understand basics of R&D in drug discovery and should be able to apply knowledge gained in respective fields of pharmaceutical industry.
Unit I Target identification and molecular modelling 7 lectures	•	ions of molecular modeling, combinatorial

गुरू घासीदास विश्वविद्यालय (केरीय विश्वविद्यालय अधिन्यम 2009 इ. 25 के अंतर्गत स्वापित केरीय विश्वविद्यालय) कोनी, बिलासपुर - 495009 (छ.ग.)

Guru Ghasidas Vishwavidyalaya (A Central University Established by the Central Universities Act 2009 No. 25 of 2009) Koni, Bilaspur – 495009 (C.G.)

	structures and physicochemical properties of drugs and receptors; Modelling drug/ receptor interactions with the emphasis on molecular mechanisms, molecular dynamics simulations and homology modelling; Conformational sampling, macromolecular folding, structural bioinformatics, receptor-based and ligand-based design and docking methods, in silico screening of libraries, semi-empirical and ab-initio methods, QSAR methods, molecular diversity, design of combinatorial libraries of drug-like molecules, macromolecular and chemical databases.	
Unit II Lead optimization 5 lectures	Identification of relevant groups on a molecule that interact with a receptor and are responsible for biological activity; Understanding structure activity relationship; Structure modification to increase potency and therapeutic index; Concept of quantitative drug design using Quantitative structure–activity relationship models (QSAR models) based on the fact that the biological properties of a compound are a function of its physicochemical parameters such as solubility, lipophilicity, electronic effects, ionization, stereochemistry, <i>etc.</i> ; Bioanalytical assay development in support of <i>in vitro</i> and <i>in vivo</i> studies (LC/MS/MS, GC/MS and ELISA).	
Unit III Preclinical development 5 lectures	Principles of drug absorption, drug metabolism and distribution - intestinal absorption, metabolic stability, drug-drug interactions, plasma protein binding assays, metabolite profile studies, Principles of toxicology, Experimental design for preclinical and clinical PK/PD/TK studies, Selection of animal model; Regulatory guidelines for preclinical PK/ PD/TK studies; Scope of GLP, SOP for conduct of clinical & non clinical testing, control on animal house, report preparation and documentation Integration of non-clinical and preclinical data to aid design of clinical studies.	
Unit IV Drug manufacturing 4 lectures	Requirements of GMP implementation, Documentation of GMP practices, CoA, Regulatory certification of GMP, Quality control and Quality assurance, concept and philosophy of TQM, ICH and ISO 9000; ICH guidelines for Manufacturing, Understanding Impurity Qualification Data, Stability Studies.	
Unit V Clinical trial design 4 lectures	Objectives of Phase I, II, III and IV clinical studies, Clinical study design, enrollment, sites and documentation, Clinical safety studies: Adverse events and adverse drug reactions, Clinical PK, pharmacology, drug-drug interaction studies, Statistical analysis and documentation.	
Unit VI Fundamentals of regulatory affairs and bioethics 4 lectures	Global Regulatory Affairs and different steps involved, Regulatory Objectives, Regulatory Agencies; FDA guidelines on IND and NDA submissions, Studies required for IND and NDA submissions for oncology, HIV, cardiovascular indications, On-label vs. off-labe drug use GCP and Requirements of GCP Compliance, Ethical issues and Compliance to current ethical guidelines, Ethical Committees and their set up, Animal Ethical issues and compliance.	
	 Recommended Textbooks and References: Krogsgaard-Larsen et al. Textbook of Drug Design and Discovery. 4th Edition. CRC Press. Kuhse, H. (2010). Bioethics: an Anthology. Malden, MA: Blackwell. Nally, J. D. (2006) GMP for Pharmaceuticals. 6th edition. CRC Press Brody, T. (2016) Clinical Trials: Study Design, Endpoints and Biomarkers, Drug Safety, and FDA and ICH Guidelines. Academic Press. 	
Oshutt	Reat	

Criteria – I (1.2.1)

3

गुरू घासीदास विश्वविद्यालय (केन्नीय विश्वविवत्य) के 25 के अंतर्गत स्वापित केन्नीय विश्वविवालय) कोनी, बिलासपुर - 495009 (छ.ग.)

Guru Ghasidas Vishwavidyalaya (A Central University Established by the Central Universities Act 2009 No. 25 of 2009) Koni, Bilaspur - 495009 (C.G.)

6 H. S. Peavy, D. R. Rowe and G. Tchobanoglous, (2013), Environmental Engineering, McGraw-Hill Inc.

Microbial Technology

Introduction to microbial technology 8 lectures

Course Objectives The objectives of this course are to introduce students to developments/ advances made in field of microbial technology for use in human welfare and solving problems of the society.

Student Learning Outcomes On completion of this course, students would develop deeper understanding of the microbial technology and its applications.

Microbial technology in human welfare; Isolation and screening of microbes important for industry - advances in methodology and its application; Advanced genome and epigenome editing tools (e.g., engineered zinc finger proteins, TALEs/TALENs, and the CRISPR/Cas9 system as nucleases for genome editing, transcription factors for epigenome editing, and other emerging tools) for manipulation of useful microbes/ strains and their applications; Strain improvement to increase yield of selected molecules, e.g., antibiotics, enzymes, biofuels.

Unit II Environmental applications of microbial technology 6 lectures	Environmental application of microbes; Ore leaching; Biodegradation - biomass recycle and removal; Bioremediation - toxic waste removal and soil remediation; Global Biogeochemical cycles; Environment sensing (sensor organisms/ biological sensors); International and National guidelines regarding use of genetically modified organisms in environment, food and pharmaceuticals.
Unit III Pharmaceutical applications of microbial technology 8 lectures	Recombinant protein and pharmaceuticals production in microbes – common bottlenecks and issues (technical/operational, commercial and ethical); Attributes required in industrial microbes (<i>Streptomyces</i> sp., Yeast) to be used as efficient cloning and expression hosts (biologicals production); Generating diversity and introduction of desirable properties in industrially important microbes (<i>Streptomyces</i> /Yeast); Microbial cell factories; Downstream processing approaches used in industrial production process (<i>Streptomyces</i> sp., Yeast).
Unit IV Food applications of microbial technology 7 lectures	Application of microbes and microbial processes in food and healthcare industries - food processing and food preservation, antibiotics and enzymes production, microbes in targeted delivery application – drugs and vaccines (bacterial and viral vectors); Non-recombinant ways of introducing desirable properties in Generally recognized as safe (GRAS) microbes to be used in food (<i>e.g.</i> , Yeast) - exploiting the existing natural diversity or the artificially introduced diversity through conventional acceptable techniques

Unit V Advances in microbial technology 8 lectures

Microbial genomics for discovery of novel enzymes, drugs/ antibiotics; Limits of microbial genomics with respect to use in human welfare; Metagenomics and metatranscriptomics - their potential, methods to study and applications/use (animal and plant health, environmental clean-up, global nutrient cycles & global sustainability, understanding evolution), Global metagenomics initiative - surveys/projects and outcome, metagenomic library construction and functional screening in suitable hosts tools and techniques for discovery/identification of novel enzymes, drugs (e.g., protease, antibiotic) etc.

(mutagenesis, protoplast fusion, breeding, genome shuffling, directed evolution etc.).

Obhatt

2010124

गुरू घासीदास विश्वविद्यालय (केरीय विश्वविद्यालय अधिन्यम 2009 ज्ञ. 25 के अंतर्गत खामित केन्द्रीय विश्वविद्यालय) कोनी, बिलासपुर - 495009 (छ.ग.)

23

Guru Ghasidas Vishwavidyalaya (A Central University Established by the Central Universities Act 2009 No. 25 of 2009) Koni, Bilaspur – 495009 (C.G.)

	 Recommended Textbooks and Referent Lee, Y.K. (2013). Microbial Biotechnolog Hackensack, NJ: World Scientific. Moo-Young, M. (2011). Comprehensive Nelson, K. E. (2015). Encyclopedia of Metagenomes: Basics, Methods, Databas The New Science of Metagenomics Reveat (2007). Washington, D.C.: National Ac Journals: (a) Nature, (b) Nature Biotechno biotechnology, (d) Trends in Biotechno (f) Current opinion in Microbiology, (g (h) Genome Research) Websites: http://jgi.doe.gov/our-science 	ay: Principles and Applications. The Biotechnology. Amsterdam: Elsevier. Metagenomics. Genes, Genomes and ses and Tools. Boston, MA: Springer US. ling the Secrets of Our Microbial Planet. ademies Press. nology, (c) Applied microbiology and logy, (e) Trends in Microbiology,) Biotechnology Advances,
Protein Engineering Credits	Course Objectives The aim of this course is to introduce methods and strategies commonly used in protein engineering.	 Student Learning Outcomes On completion of this course, students should be able to: Analyse structure and construction of proteins by computer-based methods; Describe structure and classification of proteins; Analyse purity and stability of protein and explain how to store them in best way; Explain how proteins can be usedfor different industrial and academic purposes such as structure determination, organic synthesis and drug design.
Unit I Introduction to protein engineering 5 lectures	Protein engineering – definition, application that can be engineered (definition and meth Spectroscopic properties; Stability to chang amino acid sequence, aggregation propensit amino acids and its applications.	ods of study) – affinity and specificity; es in parameters as pH, temperature and
Unit II Stability of protein structure 5 lectures	Methods of measuring stability of a protein; physicochemical properties of proteins: far- absorbance; ORD; Hydrodynamic propertie Brief introduction to NMR spectroscopy – e measured/obtained from NMR and their inte	UV and near-UV CD; Fluorescence; UV s-viscosity, hydrogen-deuterium exchange; mphasis on parameters that can be
Unit III Applications 5 lectures	Forces stabilizing proteins – Van der waals, polar interactions, hydrophobic effects; Entu methods of protein engineering: directed ev Module shuffling; Guided protein recombin screening methodologies like GigaMetrix, F Application to devices with bacteriorhodops affinity by yeast surface display; Applicatio drug discovery.	ropy – enthalpy compensation; Experimenta olution like gene site saturation mutagenesi ation, <i>etc.</i> , Optimization and high throughp High throughput microplate screens <i>etc.</i> , sin as an example; Engineering antibody
Jebhatt	affinity by yeast surface display; Applicatio	

Criteria – I (1.2.1)

R

गुरू घासीदास विश्वविद्यालय (केन्रैय विस्तवित्रत्य अधिनेत्रम 2008 इ. 25 के अंतर्गत स्वापित केन्न्रेय क्रिववेवात्य) कोनी, बिलासपुर - 495009 (छ.ग.)

Unit IV Computational approaches 5 lectures	Computational approaches to protein engineering: sequence and 3D structure analysis, Data mining, Ramachandran map, Mechanism of stabilization of proteins from psychrophiles and thermophiles <i>vis-à-vis</i> those from mesophiles; Proteindesign, Directed evolution for protein engineering and its potential.	
Unit V Case studies 1 lecture	Case Studies.	
	Recommended Textbooks and Referen 1. EditedbyTECreighton,(1997), Protein. 2 nd Edition, Oxford university press.	Structure: a Practical Approach,
	 Clelandand Craik, (2006), Protein Engineering, Principles and Practice, Vol7, Springer Netherlands. Mueller and Arndt, Protein Engineering Protocols, 1st Edition, Humana Press. Ed. RobertsonDE, Noel JP, (2004), ProteinEngineering Methods in Enzymology 	
	 J Kyte; (2006), Structure in Protein Che 	· · · · · ·
Nano- biotechnology ^{Credits}	Course Objectives The course aims at providing a general and broad introduction to multi-disciplinary field of nanotechnology. It will familiarize students with the combination of the top-down approach of microelectronics and micromechanics with the bottom- up approach of chemistry/biochemistry; a development that is creating new and exciting cross-disciplinary research fields and technologies. The course will also give an insight into complete systems where nanotechnology can be used to improve our everyday life.	Student Learning Outcomes On successful completion of this course students should be able to describe basic science behind the properties of materia at nanometre scale, and the principles behind advanced experimental and computational techniques for studying nanomaterials.
Unit I Introduction to nanobiotechnology 5 lectures	Introduction to Nanobiotechnology; Concepts, historical perspective; Different formats of nanomaterials and applications with example for specific cases; Cellular Nanostructures; Nanopores; Biomolecular motors; Bio-inspired Nanostructures, Synthesis and characterization of different nanomaterials.	
Unit II Nano – films 5 lectures	Thin films; Colloidal nanostructures; Self Assembly, Nanovesicles; Nanospheres; Nanocapsules and their characterisation.	
Unit III Nano – particles 5 lectures	Nanoparticles for drug delivery, concepts, optimization of nanoparticle properties for suitability of administration through various routes of delivery, advantages, strategies for cellular internalization and long circulation, strategies for enhanced permeation through various anatomical barriers.	
Unit IV Applications ofnano-particles 5 lectures	Nanoparticles for diagnostics and imaging (theranostics); concepts of smart stimuli responsive nanoparticles, implications in cancer therapy, nanodevices for biosensor development.	
Johnt	<u></u>	the store

गुरू घासीदास विश्वविद्यालय (केंद्रीय विश्वविद्यालय अधिन्यम 2009 इ. 25 के अंतर्गत स्वापित केंद्रीय विश्वविद्यालय) कोनी, बिलासपुर - 495009 (छ.ग.)

Unit V Nano-materials 5 lectures	Nanomaterials for catalysis, development and characterization of nanobiocatalysts, application of nanoscaffolds in sythesis, applications of nanobiocatalysis in the production of drugs and drug intermediates.	
Unit VI Nano – toxicity 5 lectures	Introduction to Safety of nanomaterials, Basics of nanotoxicity, Models and assa Nanotoxicity assessment; Fate of nanomaterials in different stratas of environ Ecotoxicity models and assays; Life Cycle Assessment, containment.	
	of Nanocomposite Materials, Wiley-V 2 David S. Goodsell, (2004); Bionanoted 3 Neelina H. Malsch (2005), Biomedica	i): Multilayer Thin Films: Sequential Assembly /CH Verlag GmbH & Co. KGaA chnology: Lessons from Nature; Wiley-Liss I Nanotechnology, CRC Press gate Techniques, (3rd Edition); Elsevier
Vaccines Credits	Course Objectives This course will provide students with an overview of current developments in different areas of vaccines.	 Student Learning Outcomes Bythe end of this course, students should be able to: Understand fundamental concepts of human immune system and basic immunology; Differentiateandunderstandimmune responses in relation to infection and vaccination; Understand requirement and designing of different types ofvaccines; Understand importance of conventional and new emerging vaccine technologies.
Unit I Fundamentals of immune system 6 lectures	Overview of Immune system; Human Imm Innate & Adaptive Immunity; Activatic Immunity; T and B cells in adaptive im Correlates of protection.	on of the Innate Immunity; Adaptive
Unit II Immune response to infection 9 lectures	Protective immune response in bacterial; viral and parasitic infections; Primary and Secondary immune responses during infection; Antigen presentation and Role of Antigen presenting cells: Dendritic cells in immune response; Innate immune response; Humoral (antibody mediated) responses; Cell mediated responses: role of CD4+ and CD8+ T cells; Memory responses: Memory and effector T and B cells, Generation and Maintenance of memory T and Bcells.	
Unit III Immune response to vaccination 8 lectures	Vaccination and immune response; Adjuvants in Vaccination; Modulation of immune responses: Induction of Th1 and Th2 responses by using appropriate adjuvants and antigen delivery systems - Microbial adjuvants, Liposomal and Microparticles as delivery systems; Chemokines and cytokines; Role of soluble mediators in vaccination; Oral immunization and Mucosal Immunity.	
Unit IV Vaccine types & design 3 lectures Mut	History of vaccines, Conventional vaccines; Bacterial vaccines; Viral Vaccines; Vaccines based on routes of administration: parenteral, oral, mucosal; Live attenuated and inactivated vaccine; Subunit Vaccines and Toxoids; Peptide Vaccine.	

गुरू घासीदास विश्वविद्यालय (केंद्रीय विश्वविद्यालय अधिनिया 2009 इ. 25 के अंतर्गत स्वापित केंद्रीय विश्ववेद्यात्य) कोनी, बिलासपुर - 495009 (छ.ग.)

Guru Ghasidas Vishwavidyalaya (A Central University Established by the Central Universities Act 2009 No. 25 of 2009) Koni, Bilaspur – 495009 (C.G.)

Unit V Vaccine technologies 4 lectures NewVaccineTechnologies;RationallydesignedVaccines;DNAVaccination;Mucosal vaccination; New approaches for vaccine delivery; Engineering virus vectors for vaccination;Vaccinesfortargeteddelivery(VaccineDeliverysystems);Diseasespecific vaccine design: Tuberculosis Vaccine; Malaria Vaccine; HIV/AIDS vaccine; New emerging diseases and vaccine needs (Ebola,Zika).

Recommended Textbooks and References:

Janeway, C.A., Travers, P., Walport, M., & Shlomchik, M.J. (2005). ImmunoBiology: the Immune System in Health and Disease. USA: Garland Science Pub.

- 2 Kindt, T.J., Osborne, B.A., Goldsby, R.A., & Kuby, J. (2013). Kuby Immunology. New York: W.H.Freeman.
- 3 Kaufmann, S.H. (2004). NovelVaccinationStrategies. Weinheim: Wiley-VCH.
- 4 JournalArticles(relevantissues)from:AnnualReviewofImmunology,Annual ReviewofMicrobiology,CurrentOpinioninImmunology,NatureImmunology, Expert review ofvaccines.

apr/2020

गुरू घासीदास विश्वविद्यालय (केंद्रीय विश्वविव्यालय अधिनेम 2009 ज्ञ. 25 के अंतर्गत स्वापित केंद्रीय विश्वविद्यालय) कोनी, बिलासपुर - 495009 (छ.ग.)

Guru Ghasidas Vishwavidyalaya (A Central University Established by the Central Universities Act 2009 No. 25 of 2009) Koni, Bilaspur – 495009 (C.G.)

Medical Microbiology and Infection Biology Credits	and exposure to medical aspects of bacteriology, virology, mycology, parasitology and infectious diseases along with concepts of symptoms, pathogenesis, transmission, prophylaxis and control, a conceptual understanding of host – pathogen interactions using well charac- terized systems as examples. The student should have a good grasp of disease causing microbes and their interactions with host.	 should be able to: Compare and contrast different microbial diseases, including properties of different types of patho- gens, and mechanisms of pathogenesis; Summarize role of host in infectious disease, including natural barriers to infection, innate and acquired immune responses to infection, and inflammation; Compare and contrast experimental approaches for identifying virulence genes and advantages/disadvantages of each approach for specificpathogens.
Unit I Bacterial diseases 8 lectures	of antibiotics) - Inhibition of cell wall synt	ract; Pathogenesis and virulence factors asion, Toxins, Enzymes, Antiphagocytic ittion; Bacillus anthracis, Clostridium spp., o cholerae, Helicobacter pylori, Salmonella Listeria monocytogenes, Mycobacterium enzae, Bordetella pertussis, Brucellosis, s; Antibacterial chemotherapy (with examples thesis, inhibition of cell membrane function, esis, antimetabolites; Drug resistance - origin microbial activity in vitro and in vivo,
Unit II Viral diseases 7 lectures	persistence (chronic and latent infection); H Viral hemorrhagic fever, viral encephaliti infection (emphasis on Avian and swine flu) and Human Cancer viruses; Emerging viral Chikungunya, Zika, Chandipura; Antiviral c	l diseases – Ebola, Marburg, SARS, Hanta, chemotherapy and Viral vaccines; Nucleotide iptase inhibitor, protease inhibitor, fusion
Unit III Fungal and protozoan infections 7 lectures	Types of Mycoses (with specific example of causative fungi) – Superficial, Cutaneous, Sub-cutaneous; Types of Mycoses (with specific example of causative fungi) - Endemic and Opportunistic; Mycotoxins and Antifungal chemotherapy – Mycetismus, Aflatoxins, classes of currently available drugs and new inhibitors in the pipeline; Protozoan diseases - Giardiasis, Amoebiasis; Leishmaniasis, African sleeping sickness; Malaria, Cryptosporidiosis; Infection by Helminths – Nematodes, Trematodes, Cestodes.	
Unit IV Sexually transmitted diseases and congenital infections	Chlamydial infections (Chlamydia trachoma	and Lentiviral infection; Herpes infections; <i>tisis</i>); Mycoplasma and Ureaplasma infection; – Cytomegalovirus, Varicella zoster, HBV,

2

गुरू घासीदास विश्वविद्यालय (केंद्रीय विश्वविद्यालय अधिनम 2009 क्र. 25 के अंतर्गत स्वामित केंद्रीय विश्वविद्यालग) कोनी, बिलासपुर - 495009 (छ.ग.)

Guru Ghasidas Vishwavidyalaya (A Central University Established by the Central Universities Act 2009 No. 25 of 2009) Koni, Bilaspur – 495009 (C.G.)

Unit V Host-pathogen interaction 6 lectures Intracellular and extracellular pathogens, Principles of microbial pathogenesis, host damage, inflammatory responses, adaptation strategies of pathogen- impact of host and pathogen metabolism on immunity and pathogen survival; Chronic pathogens and mechanisms of persistence; Evasion mechanisms of pathogens; Bacterial – host interaction- Mycobacterium tuberculosis, Borrelia burgdorferi; Viruses – host interaction: HIV, Influenza; Protozoan – host interaction: Plasmodium spp., Leishmania major.

Recommended Textbooks and References:

- 1 KC Carroll, SA Morse, T Mietzner, S Miller. (2016) Jawetz, Melnick and Adelbergs's Medical Microbiology 27th edition, McGraw Hill.
- 2 J Owen, J Punt and Sharon Stranford, (2012), Kuby Immunology; 7th edition, W.H. Freeman and Co.
- IT Kudva, NA. Cornick, PJ Plummer, Q Zhang, TL Nicholson, JP Bannantine and BH Bellaire. Virulence Mechanisms of Bacterial Pathogens, (2016) 5th edition, ASM Press.
- 4 V Kumar, AK. Abbas and JC Aster, (2015), Robbins & Cotran Pathologic Basis of Disease. 9th Edition, Elsevier.
- K Murphy and K Weaver, (2016), Janeway's Immunobiology, 9th Edition, Garland Science.
- 8 AK Abbas, (2015), Cellular and Molecular Immunology. 8th Edition, Elsevier.
- 2 Ananthanarayan and Paniker, Textbook of Microbiology, 8th Edition.
- Baveja CP, (2001) Textbook of Microbiology. 5th Ed., Mcgraw Hill Education.

917/2020